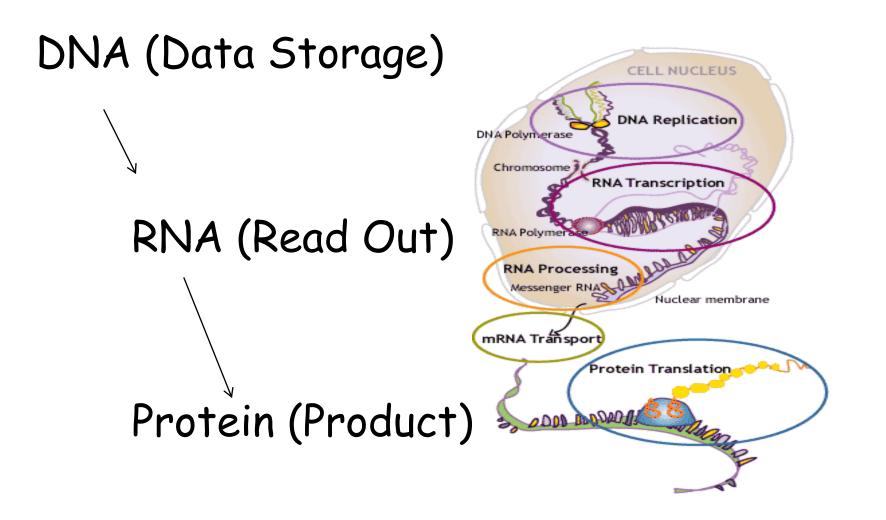
TMA: A Valuable Clinical & Research Resource

Helen L. Fedor

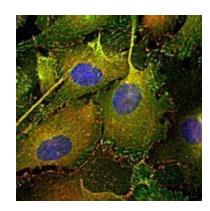


National Society for Histotechnology

Seattle, Washington

September 28, 2010

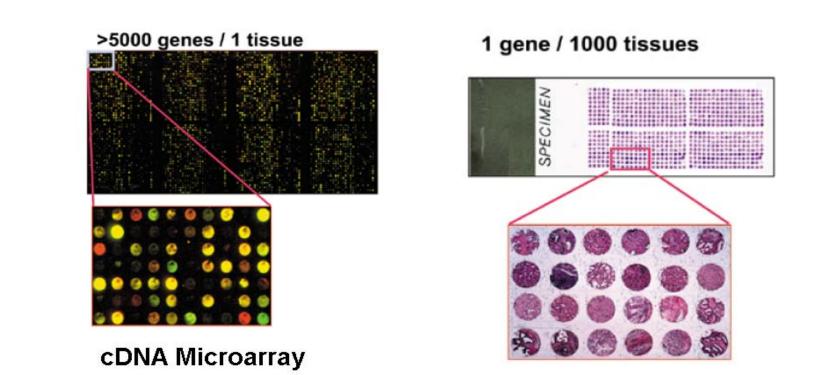
How Does DNA Specify the Sequence of a Protein?


- DNA sequences must be "decoded" to make a protein
- This decoding requires creation of an RNA template
- Creation of "messenger RNA" is called transcription
- Creation of protein from the mRNA is called translation

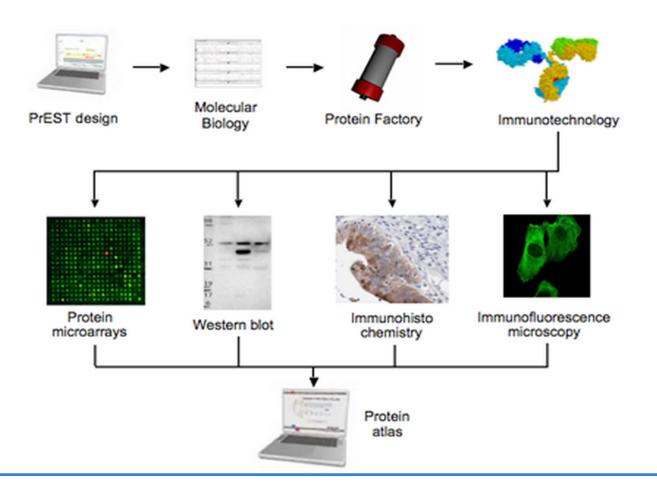
Protein to Cellular Components

Protein

Folding to form tertiary structure


Assembly of proteins to from cellular components

Arraying Technologies


Tissue microarray technology for high-throughput molecular profiling of cancer Kallioniemi O et.al. Human Molecular Genetics, 2001, vol. 10, No. 7

Nilsson et al (2005). Towards a human proteome atlas: High-throughput generation of mono-specific antibodies for tissue profiling. Proteomics. 5(17):4327-37

IC DOOKINGING DOL.

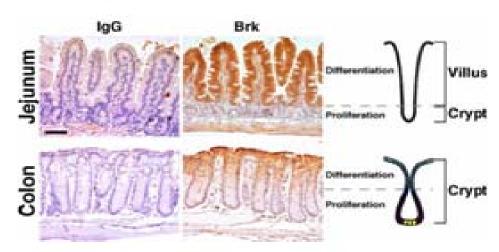
Pontén F et al (2008). The Human Protein Atlas - a tool for pathology. J Pathology. 216(4):387-93.

Discovery of Tumor Markers

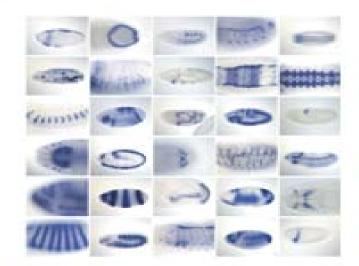
- Human Protein Atlas
 - A wide scale screening effort underway to catalog all human proteins
 - Ability to produce mono-specific antibodies
 - Develop markers for disease process

A CAR	The human protein atlas shows expression and localization of proteins in a large variety of normal human tissues, cancer cells and cell lines with the aid of immunohistochemistry (IHC) images and immunofluorescence (IF) confocal microscopy images.
" (A	Enter search:
	Select a chromosome: $1 \longrightarrow 5 \longrightarrow 9 \longrightarrow 13 \longrightarrow 17 \longrightarrow 21 \longrightarrow 22 \longrightarrow 3 \longrightarrow 7 \longrightarrow 10 \longrightarrow 14 \longrightarrow 18 \longrightarrow 22 \longrightarrow 3 \longrightarrow 12 \longrightarrow 16 \longrightarrow 20 \longrightarrow 7 \longrightarrow $
	Enzymes GPCRs excl olfactory receptors Kinases Peptidases Transcription factors Transporters More
	Filter search to show genes with tissue profiles 🔲
	Version: 5.0 Atlas updated: 2009-06-16 (<u>release history</u>) Atlas content: 8832 antibodies and 7,334,244 images.

2009-06-16 A new version (5.0) has been released including antibodies targeting protein products from 1/3 of the human protein-coding genes. Tutorials on how to use the Human Protein Atlas have also been added. The Human Protein Atlas now contains subcellular


localization data (IF) for 3541 genes.

See release history for further details.


Knut och Alice Wallenbergs Stiftelse

The HPR project is funded by the Knut & Alice Wallenberg foundation. The atlas is part of the HUPO Human Antibody Initiative (HAI).

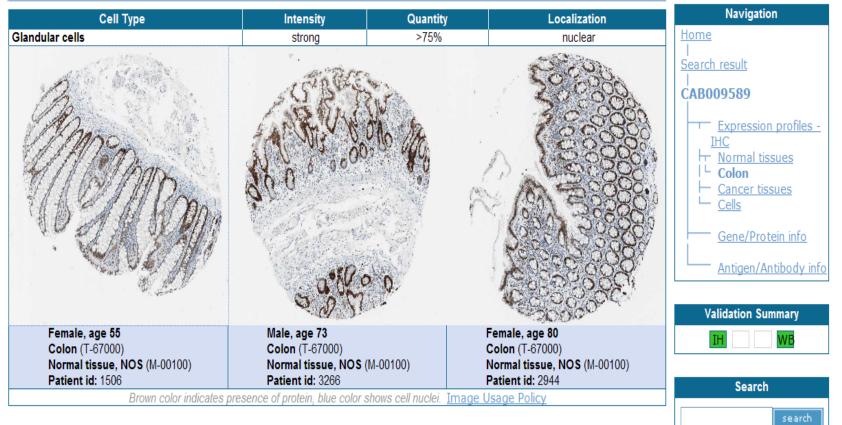
Determine Pattern of Protein/RNA Expression Across Tissues and Cell Types Provides Insight into Gene Function and Relevance

http://edoc.huberlin.de/dissertationen/haeg ebarth-andrea-2005-08-18/HTML/chapter3.html

http://www.mpicbg.de/research/researchgroups/pavel-tomancak.html

Human Protein Atlas: Example, EZH2 in Normal Colon Tissue

the project


protein atlas

dictionary

disclaimer

submission of antibodies help

Colon [EZH2]

Introduction

- Many <u>proposed</u> new disease target genes with diagnostic, prognostic, and therapeutic applications
- Validation requires many samples
- Quantitative RT-PCR or protein arrays have disadvantages
 - Genes may be expressed in multiple different cell types
- In situ analyses: ideal but generally slow
- Tissue microarrays address some of these problems

Discovery of Tumor Markers

- Discovery based assays destroy the tissue, hence no morphology
- Tissue allows the researcher to evaluate candidate makers in the cellular micro – environment
- Some markers behave differently in context than it does homogenized
- TMA's allow the researcher a variety of tissue to evaluate the effects of candidate marker.

Why Do We Use Paraffin Tissue Versus Other Biological Samples?

- Abundant Resource
- Clinical information attached
- Can be stored for a long period of time
- Retains most of it's nucleic information
- Allow users to evaluate information in a tumors' micro-environment

Frozen TMAs

- Post fixation can be tightly controlled
- Some antibodies do not bind to formalin fixed epitopes
- The quality of nucleic acids (DNA/RNA) is generally much higher
- Hoos and Cordon-Cardo have developed a simple devise, independent of the Beecher Instruments devise for frozen TMA construction (*Lab Invest* 81:1331-1338, 2001)
- Fejzon have adapted the Beecher Instrument machine using dry ice to keep the donor and recipient blocks frozen (*Am J Pathol 159:1645-1650, 2001*)

Histological Evaluation

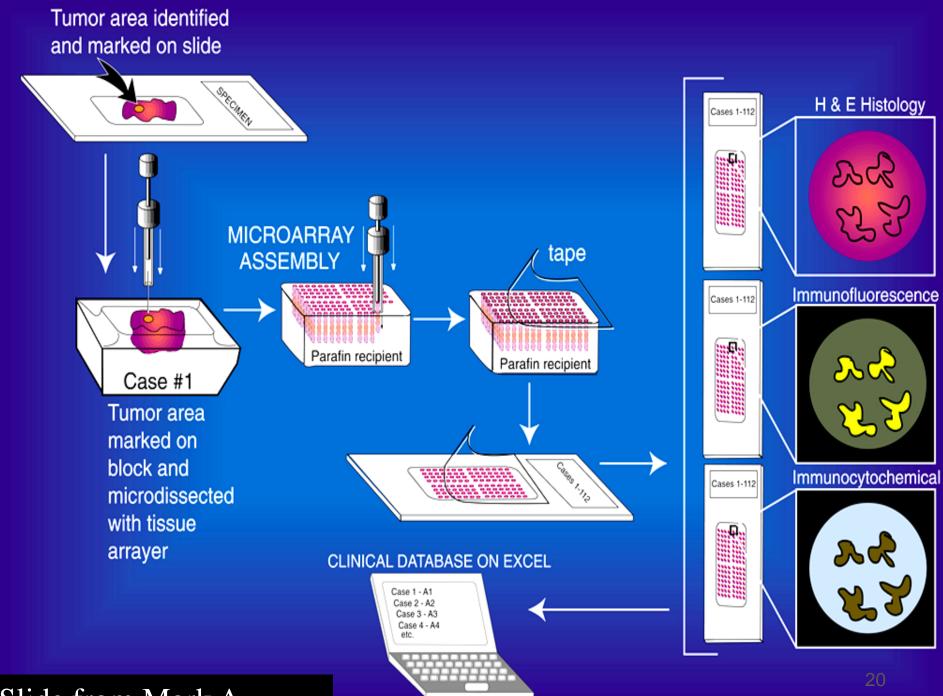
- Paraffin blocks
 - Best method for histomorphologic examination
 - Cost effective method of storing surgical specimens
 - Can last upwards of 50 years
- H&E stained slides
 - Most universal diagnostic stain

Historical Background

- Diagnostic test or research was done on a whole mount section
- Little standardization from run to run or from technician to technician
- Hard to compare samples
- High cost for reagents
- Time prohibitive

- 1986: H. Battifora "Multi-Tissue Tumor Block"
- 1998: Kononen et al. "Tissue Microarray" (TMA)

TMA allows many more specimens that are precisely arranged

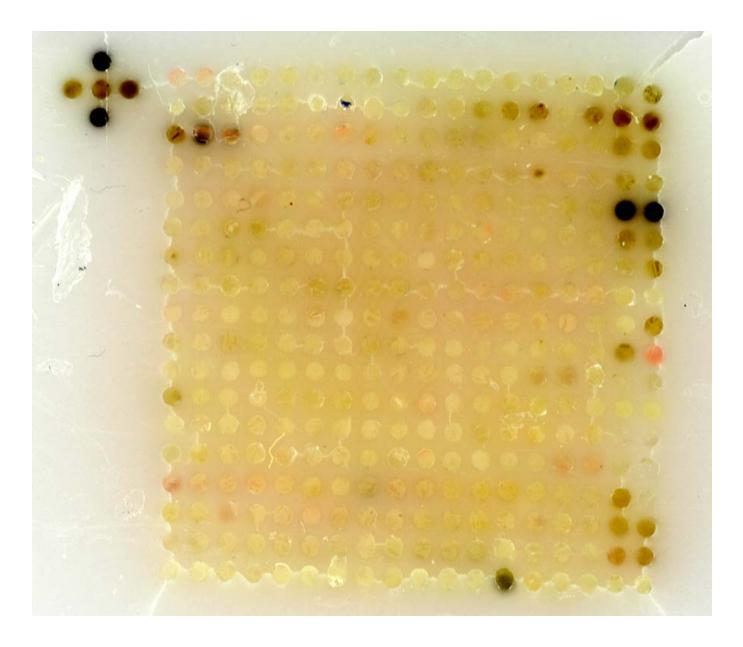

Why TMA Technology Was Created

 "...analysis of hundreds of specimens from patients in different stages of disease is needed to establish the diagnostic, prognostic and therapeutic importance of each of the emerging cancer gene candidates."

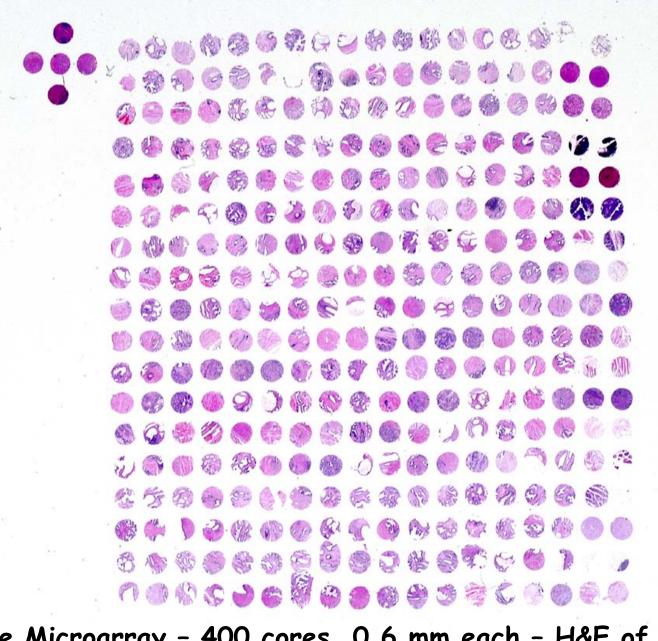
Tissue microarray technology for high-throughput molecular profiling of tumor specimens Kononen J et.al. Nature Medicine, 1998, vol. 4, No. 7

Tissue Microarray Advantages

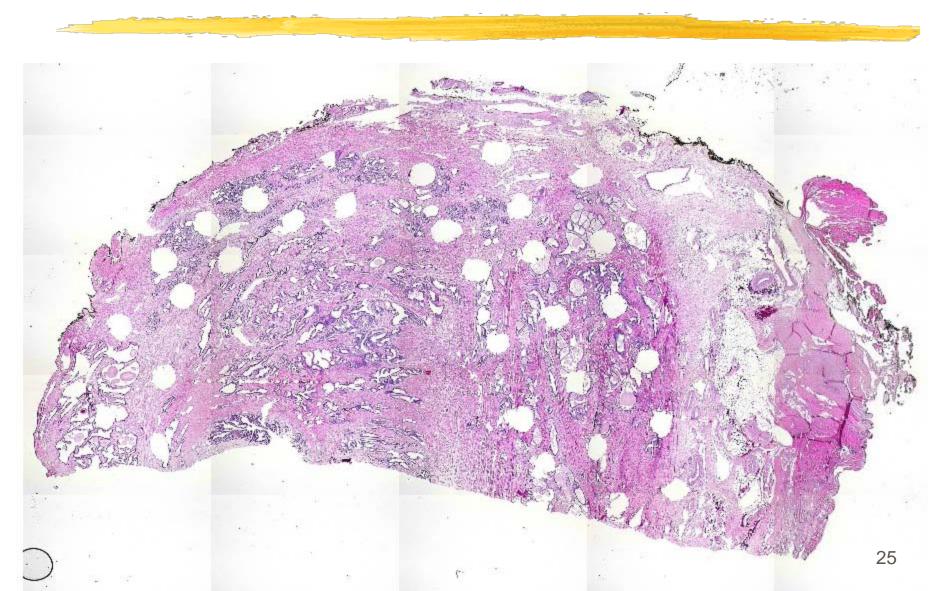
- High throughput
- Expands tissue use
- Uniform reaction conditions
- Built-in controls
- Economize use of reagents
- Facilitates data recording and linking to clinical data



Slide from Mark A.



Donor Block Transfer to Sampling Recipient Block



JHU Tissue Microarray – 400 cores, 0.6 mm

Tissue Microarray – 400 cores, 0.6 mm each – H&E of 4 μm section

Effects of Tissue Removal on Paraffin Blocks

Uses for TMAs

- Pattern of gene expression across normal and diseased tissues (*prevalence arrays*)
- Work up new antibodies or probes
- Compare staining methods
- Compare tissue fixation/processing methods

Uses for TMAs

- Clinico-pathological studies: correlation of gene expression with outcome (*prognostic arrays*)
- Validation of RNA profiling studies
- Comparing effects of therapeutic interventions (*Therapeutic effect arrays*)
- Many others

What Is the Purpose of the Array?

- Human control tissues
- Specific disease type
- Specific disease type with matched normal tissue
- Cell Lines
- Drug treatment arrays (progression)
- Human tissue before and after treatment in clinical trials

What Is the Purpose of the Array

- New antibody workups, many tissue types at the same time
- Animal study tissues
- Zoo organ collections
- Xenograft tumors
- Mixed animal model with human counterpart

Prostate TMAs at JHU – Contain Tissues From > 700 Total Patients

- New Marker Prevalence Phase I Arrays
 - from 4-8 patients/cases each
- New Marker Prevalence Phase II Arrays:
 - 20-40 patients/case each
- Prognostic/Grade-Stage Phase II Arrays:
 - used to correlate marker expression with Gleason grade and pathological stage in a small number of cases (20-40).
- Prognostic/Grade-Stage Phase 2 Arrays
 - are similarly used but contain samples from up to 240 patients (6 arrays).
- Prognostic/Natural History of Prostate Cancer Recurrence after radical prostatectomy
 - up to 317 patients (287 with biochemical recurrence and long term follow-up)
- Untreated Metastatic Prostate Cancer
- Matched Primary-Metastatic Prostate Cancer Arrays
- High Grade PIN –
- Atrophy –

Progression TMA

- Usually has clinical outcomes data linked
- Looking for a biological expression change
- Maybe be done with patient samples that have under gone therapies
- Maybe multi-institutional

Tumor Specific TMA

- Possible clinical data attached
- Designed to study a specific tumor or disease
- Looking for tumor wide specific changes
- Includes some normal tissues
- Or includes matched normal tissues

New Antibody Workups

4-8 cases of Tumor and adjacent normal from one cancer type

With a redundancy of four

New Antibody Workups

 When evaluating a new antibody we use an TMA that has 20 different tissue types

Human Control Tissues

 Discarded human tissues from surgical specimens

 Ideal for working up new antibodies or probes for *in situ*

Tissue Types

Stomach Colon Gall bladder Pancreas Liver Thymus Lymph node

Thyroid Uterus Skeletal muscle Ovary Seminal Vesicle Prostate Salivary gland

Skin Lung Brain Kidney Spleen Tonsil Breast

Research Arrays

- May have tissue from hundreds of cases
- May contain tumor and normal from each of the cases
- The tissue may be put into more than one array block

Evaluating Prognostic Markers

The prospect of survival and recovery from a disease as anticipated from the usual course of that disease or indicated by special features of the case

Research Article

Protein Expression Profiling Identifies Subclasses of Breast Cancer and Predicts Prognosis

Jocelyne Jacquemier,^{1,2} Christophe Ginestier,¹ Jacques Rougemont,⁶ Valérie-Jeanne Bardou,³ Emmanuelle Charafe-Jauffret,^{1,2,7} Jeannine Geneix,¹ José Adélaïde,¹ Alane Koki,⁸ Gilles Houvenaeghel,⁴ Jacques Hassoun,^{2,7} Dominique Maraninchi,^{5,7} Patrice Viens,^{5,7} Daniel Birnbaum,¹ and François Bertucci^{1,5,7}

¹Institut de Cancérologie de Marseille, Département d'Oncologie Moléculaire, ²BioPathologie, ³BioStatistiques, ⁴Chirurgie, and ⁵Oncologie Médicale et Investigation Clinique, Institut Paoli-Calmettes and UMR599 Institut National de la Santé et de la Recherche Médicale; ⁶ERM206 Institut National de la Santé et de la Recherche Médicale; ⁷Université de la Méditerranée, UFR de Médecine; and ⁸Ipsogen S.A., Marseille, France

Abstract

Breast cancer is a heterogeneous disease whose evolution is difficult to predict by using classic histoclinical prognostic factors. Prognostic classification can benefit from molecular and St-Gallen; refs. 3, 4), decisions on whether to treat patients with node-negative cancer with or without adjuvant chemotherapy are currently being made with scant information on risk for metastatic relapse. In addition, identifying among the patients who receive chemotherapy, these who will benefit and these who will not

x 10.88 in <

| 🛯 🍕 🛛 (1 of 13) 🔹 🔊 🜍

Cancer Res 2005; 65: (3). February 1, 2005

Discovery of Tumor Markers

 Collect a series of markers and apply them to a TMA to help discern function

 Usually use already characterized antibodies, but there is a wide-scale screening effort underway

Challenges of Working with Tissue

- Autolysis of tissue
- Fixation alters epitope sites
- Need multiple samples for validation
- Time prohibitive
- In Situ studies require well characterized specimens

Validation - Breast Cancer I

Number of TMA spots required to represent ER, PR and Her2/neu

Two spots: similar to the whole tissue in more than 95% of the cases

Camp RL, Charette LA, Rimm DL: Validation of tissue microarray technology in breast carcinoma. Lab Invest 80:1943-1949, 2000

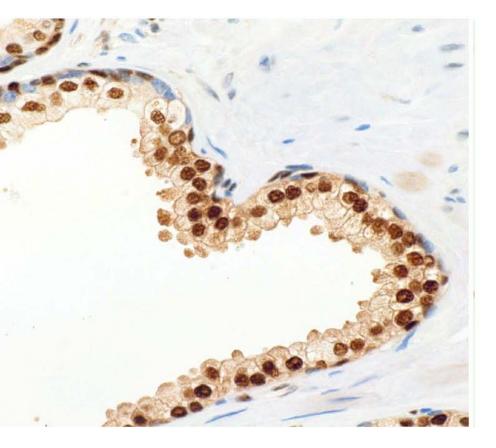
Validation - Prostate Cancer

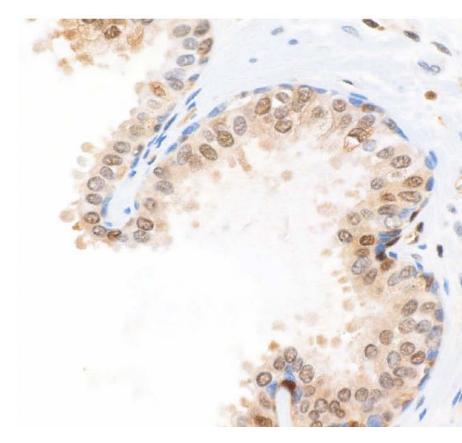
- 10 replicate tumor samples from 88 cases of prostate cancer to evaluate Ki-67 expression
- Four cores provided optimal sampling to determine PSA recurrence
- Fewer TMA samples: significantly increased Ki-67 variability and a larger number did not significantly improve accuracy

Rubin, MA, et al., Am J Surg Pathol 2002, 26:312-9

Validation - Summary

- All published studies indicate there is agreement between the use of TMAs and standard tissue sections for clinicopathological studies
- In theory, the number of cores needed will depend on the variability in staining
- 2-4 cores are representative of 95% of the tissue
- 5-6 cores does not improve concordance rates


Most Important Aspect of Tissue Microarray Construction


→ Fixation

Fixation

Fixation

p27Kip1 Fixation Artifact Peripheral Aspect Interior Aspect

p27Kip1 Fixation Study

- Prostate specimens fixed in formalin at for 0, 1, 2, 3, 7 or 8 days
- TMA were constructed containing (564 samples 0.6 mm in diameter) of benign prostate tissue
- TMAs stained against p27^{Kip1} by Immunohistochemistry
- Quality of staining graded based on estimate of percent nuclei in normal secretory cells with strong staining

Hum Pathol. 2002 Jul;33(7):756-60.

Inadequate formalin fixation decreases reliability of p27 immunohistochemical staining: probing optimal fixation time using high-density tissue microarrays.

De Marzo AM, Fedor HH, Gage WR, Rubin MA

- When categorized regarding fixation time as 0, 1, or 2 or more days, there was a significant increase (P < 0.0001) in the percentage of cores scored as strong (>50% nuclei strong) as fix time increased
- Even at 8 days of fixation, staining was superior to same day processing and equal to 2 days

Build, Buy or Collaborate?

- Construction is not particularly difficult, especially if done in a core facility
- Obtaining tissue can be very difficult and time consuming!
 - Obtaining clinical follow-up can be even more difficult
- Always plan to construct and use TMAs in conjunction with a histopathologist!
- Buying TMAs is possible, but ...
- Collaborations are good, but this may involve MTAs, and significant support for collaborator

Companies Selling TMAs

- Cybri
- Isbio
- Stratagene
- Zymed
- WVU Pathology
- Gentaur
- Biosciences
- Innogenex
- Invitrogen
- Lifespan

BD Pharmingen Imgenex(Super Bio Chips) Petagen (MTR Scientific) Ambion LandMark Chemicon Clinomics Biogenex Oligene Koma Biotech **Bio Chain**

Challenge of Interpretation

- Validation of antibodies need to be performed on your tissue(s) of interest
- Pilot TMAs should always be used if possible and these should be used after antibody/ in situ protocol is already validated
- Histopathology interpretation is required for most TMA studies on every slide!

Challenge of Interpretation

 "The TMA platform remains challenging because working with tissue remains challenging"

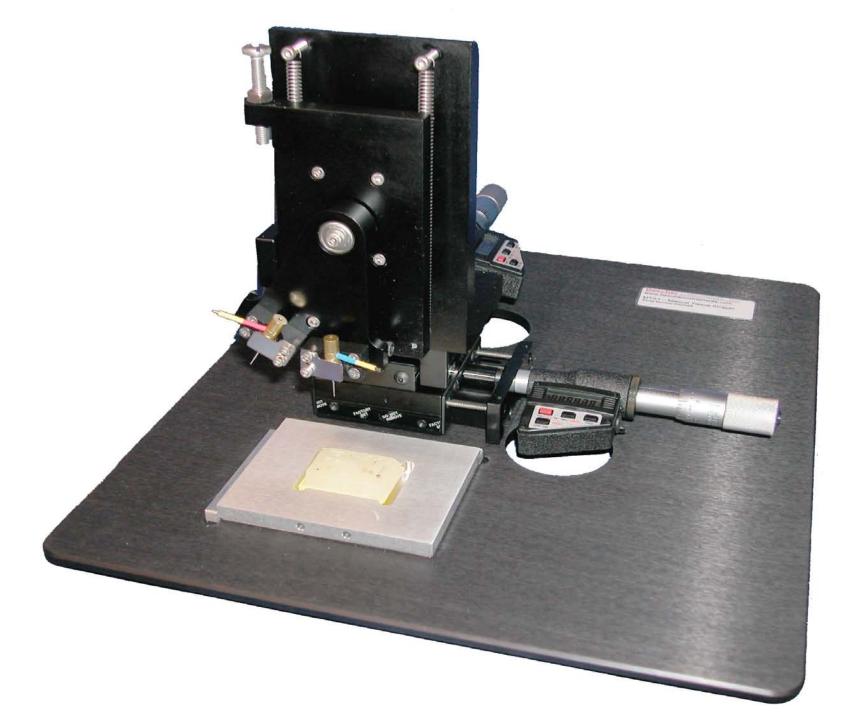
Hewitt, S.M. Tissue Microarrays as a tool in the discover and validation of tumor markers. In Methods in molecular Biology, Tumor Biomarker Discover, vol 520, humana press

99 Core Array Using 1.5 mm Punch

400 Core Array Using 0.6 mm Punch

Percent Increase in Tissue Used

Core Size	Area	Percent Difference
0.6 mm	0.28 mm Square	
1.0 mm	0.78 mm Square	64% More Tissue
1.5 mm	1.77 mm Square	84% More Tissue


Maximum utilization of valuable tissue

 Number of samples on a slide is maximized

 Damage to the donor and recipient block is minimized

 Many studies have shown that this size gives as much information as a standard tissue section

Constructing Tissue Microarrays Without Prefabricating Recipient Blocks: A Novel Approach

•Used double-sided adhesive tape attached to x-ray film as an adhesive platform on which the tissue cores were placed securely

•The array of tissue cores then was embedded in an embedding mold

•TMAs with up to 220 cores

•2 to 3 hours

Chen N. J Clin Pathol. 2005 Jul;124(1):103-7.

CEMA Cutting Edge Matrix Assembly

- Ultra high density arrays
- Cut tissues 250-1000um thick
- Place each sample on top of each other and bond to make a stack
- Re-embed In paraffin
- Cut primary stacks into secondary plates of 250-100um


CEMA Cutting Edge Matrix Assembly

 Secondary plates are bonded, oriented, re-embedded in paraffin

•Final array slides are cut at 5um

Nature Methods 2, 511 - 513 (2005) Ultrahigh density microarrays of solid samples Matthew J LeBaron, He

EZ-TMA[™] Manual Tissue Microarray Kit 1

sales@ihcworld.com

Array Builder from Lab Vision

http://www.labvision.com/

Tissue-Tek[®] Quick-Ray[™] Tissue Microarray System

http://www.sakuraamericas.com/products/tisstek-quickray.html

Arraymold Manual Tissue Microarrayer

For Frozen or Paraffin arrays

http://www.ihcworld.com/products/Arraymold.htm

Slide Storage

Antigenicity is greatly affected by ambient air over time.

Divito et al. reported that here was a significant loss of ER staining by 6 days in ambient temperatures

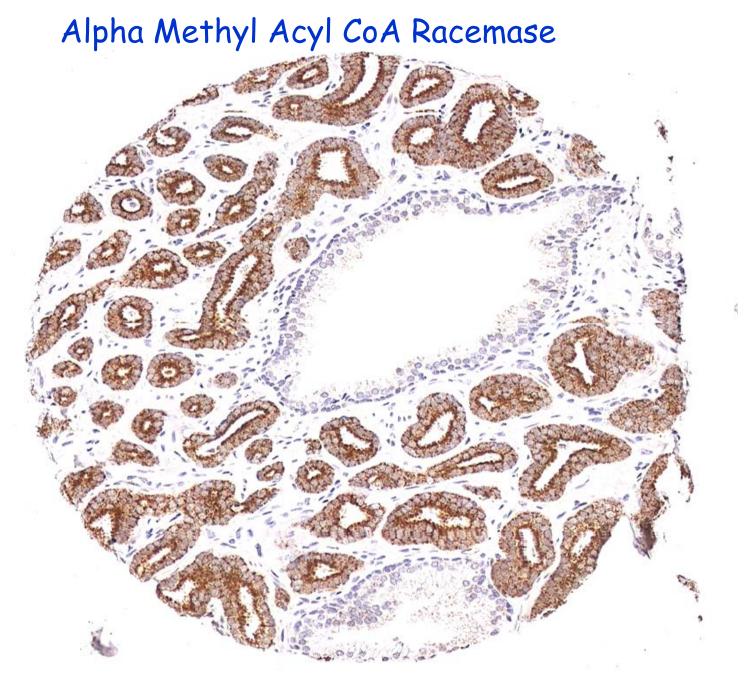
Lab Invest. 84, 1071-1078(2004)

Tissue Microarray Slide Storage

- Few studies have been completed looking at the viability of tissue components on paraffin slides over time
- The slides are precious and need to be stored in a fashion that will protect the quality of all the tissue characteristics
- We cut 20 sections at one time

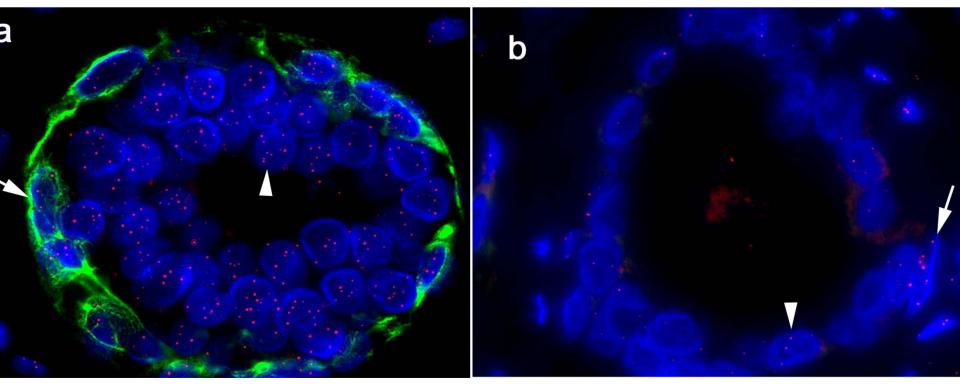
Tissue Microarray Slide Storage

- They are dried overnight in a vertical position
- Then they are placed front to front (we use chemate or probe-on Plus slides)
- And then placed in small Ziploc bags labeled, and stored at -20 degrees


Slide Storage

- Others are using various procedures to retain the quality of their slides
- After the slides are dry they are dipped in liquid paraffin
- Or stored at -80 degrees C
- Stored under nitrogen gas
- Dipped and stored at 4 degrees

Staining Tissue Microarray Slides

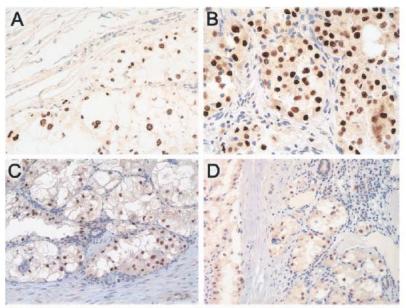

 Tissue microarray slides may be stained by any means that conventional slides may be stained

They do not need any special treatment

Cancer Res. 2002 Apr 15;62(8):2220-6

Combined FISH and IHC in Paraffin

Alan K. Meeker, et al., Am J Pathol 2002 160:1259-68.


Aberrant Nuclear Immunoreactivity for TFE3 in Neoplasms With *TFE3* Gene Fusions

A Sensitive and Specific Immunohistochemical Assay

Pedram Argani, M.D., Priti Lal, M.D., Brian Hutchinson, M.A., Man Yee Lui, B.A., Victor E. Reuter, M.D., and Marc Ladanyi, M.D.

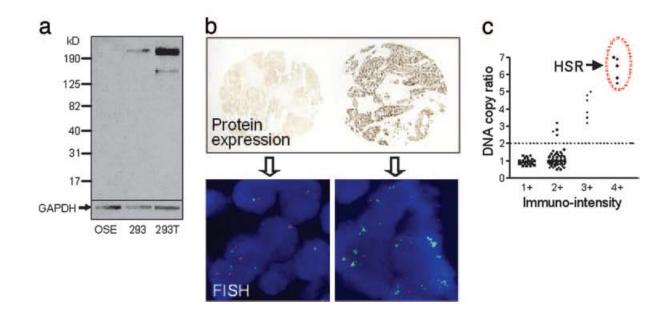
756

P. ARGANI ET AL.

39/40 tumors pos – Sen 97.5%

6/1476 other tumors – Spec 99.6%

Am. J. Surg Path, 2003, 27:750-61.


Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma

NA

le-Ming Shih*[†], Jim Jinn-Chyuan Sheu*, Antonio Santillan*, Kentaro Nakayama*, M. Jim Yen*, Robert E. Bristow*, Russell Vang*, Giovanni Parmigiani*[‡], Robert J. Kurman*, Claes G. Trope[§], Ben Davidson[§], and Tian-Li Wang*[†]

*Departments of Pathology, Gynecology, and Oncology, [‡]Department of Biostatistics, The Johns Hopkins University School of Medicine, Baltimore, MD 21231; and [§]Departments of Pathology and Gynecologic Oncology, Norwegian Radium Hospital, University of Oslo, Montebello, N-0310 Oslo, Norway

Edited by Bert Vogelstein, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, and approved August 15, 2005 (received for review May 20, 2005)

14004–14009 PNAS September 27, 2005 vol. 102 no. 39

Cell Culture Donor Blocks

- Resuspend cells in 10% formalin and fix overnight
- Pellet the cells and then wash in 1 X PBS
- Pellet and resuspend cells in 0.8% agarose at 42 degrees
- Prefill tapered end of a 0.6ml microfuge tube with agarose and let solidify

Cell Culture Donor Blocks

- Transfer the agars cell mixture to the microfuge tube with the solidified agarose
- Add a wooden toothpick to the tube, this facilitates removal of the plug form the microfuge tube
- This plug is removed after it solidifies and can be cut in half to yield two blocks of cells
- Process the plugs using standard paraffin processing schedules

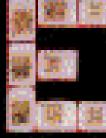
Array Construction Tips and Techniques


Sources of information

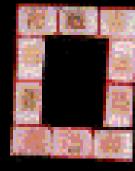
- Protocols, tips techniques, and trouble-shooting
 - Review : Jensen TA, Hammand MEH: the tissue microarray-a technical guide for histologists. The journal of Histotechnology 24:283-287, 2001
 - A detailed web site with protocols: http://www.Yalepath.Org/dept/research/ycctma/ytm a_protocol.Pdf
 - Sites developed by the NIH:
 - Http://resresources.Nci.Nih.Gov/tarp/

Some Web Sites

- Rimm Lab, Yale
 http://www.yalepath.org/dept/research/ycctma/
 ytma_protocol.pdf
- Johns Hopkins TMA Lab <u>http://tmalab.jhmi.edu/</u>
- Beecher Instruments http://www.beecherinstruments.com



Æ



Need for Data Management

200 TMAs from Johns Hopkins TMA lab

Record Block

- The record block has 1200 cores
- If you could get 300 sections from this block
- That would yield 360,000 samples

However, we do not recommend going over 600 punches in one block

Database Design

American Journal of Pathology, Vol. 159, No. 3, September 2001 Copyright © American Society for Investigative Pathology

Technical Advance

Relational Database Structure to Manage High-Density Tissue Microarray Data and Images for Pathology Studies Focusing on Clinical Outcome

The Prostate Specialized Program of Research Excellence Model

Sargum Manley,* Neil R. Mucci,[†] Angelo M. De Marzo,[‡] and Mark A. Rubin*[§]

autor anta a f Datha la autor di terra al Madiaina Divis

histochemical biomarkers including E-cadherin, 1 tate-specific antigen, p27^{Kip1}, and Ki-67 labeling ir This system facilitates the statistical analyses of 1

The TMAJ Software Project http://tmaj.pathology.jhmi.edu

What is TMAJ?

 TMA-J is a set of open source software tools and backend database structure to facilitate management and analysis of tissue microarrays and associated pathology and image data

What Does TMAJ Do?

The Database Tracts:

- Clinical information about pathology specimens
- Pathology tissue blocks
- Tissue Microarray cores
- TMA Blocks
- TMA Slides
- TMA core images
- TMA image scoring data: manual or semiautomated

What Does TMAJ Do?

The software applications provide a platform for:

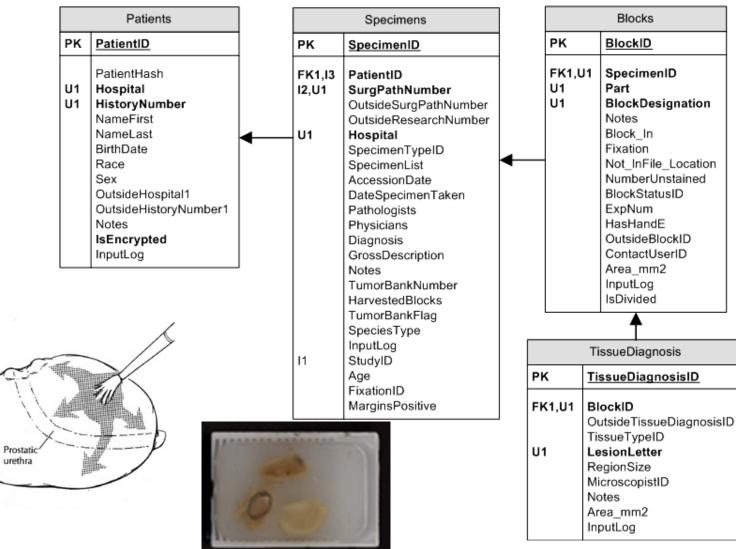
- Entering pathology data
- Designing TMAs
- Viewing and scoring TMA images online
- Viewing multiple TMA images from the same spot
- Controlling access by managing users and projects

Tissue Microarrays	750
Specimens	51,900
Tissue Blocks	41,300
ArrayCores	106,800
ArraySlides	8501
ArrayImages	212,256

*286 users, 39 Institutions, updated August, 2010

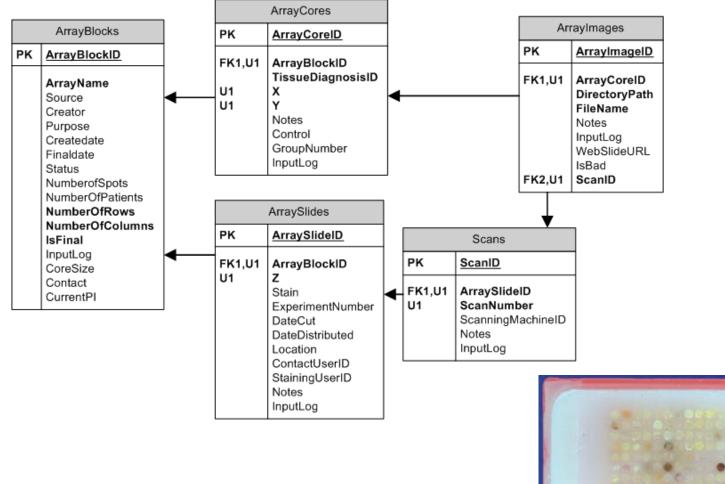

Primary Goals of System

- Address security issues
- Remove or isolate patient identifiers
- Manage multiple organ systems
- Develop web based interface
- Scalable to accommodate large number of simultaneous users
- Storage of large sets of images with diagnoses
- Data structure compatible with emerging standards for easy data exchange
 - CaBIG compatibility (to be defined)
 - The tissue microarray data exchange specification:
 - Berman et al.,


(http://www.pubmedcentral.nih.gov/articlerender.fcgi ?artid=165444) 89

Security: Protecting Patient Information

- Database stored on a secure server
- Identifiable patient information in encrypted tables (Approved by the IRB)
- Researchers have no access to patient identifiers
- Creates virtual separate entities: "clinical database" and "research database"


Patients, Specimens, & Blocks

tables all form a

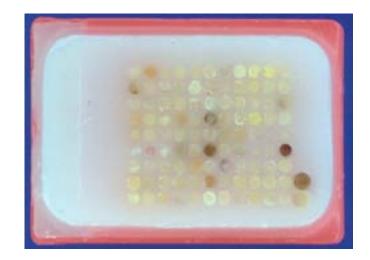
Seminal vesicles

ArrayBlocks

The Schema of ArrayBlock-relat

•Array_Cores

•Array_CoreID


•Array_BlockID

•Tissue_DiagnosisID

•X

•Y

Applications & Screenshots

📓 TMAJ
The TMAJ Software Project
Johns Hopkins TMA Lab Version 2.33.0
Welcome, Angelo !
Login Reset About Logout Exit
ArrayBuilderDesign a Tissue MicroArray
Array Manager Input Data about ArrayBlocks, ArraySlides, and Scans
Images Manager View and Diagnose Images from a Tissue MicroArray slide
ImportImport Scanned Images or Specimens
Meta Data View and Add Custom Fields to TMAJ
Specimens Manager Input Data about Specimens, Donor-Blocks, or TissueDiagnoses
Options Change Password, other miscellaneous tasks
Administrator Perform Administrative Tasks for TMAJ
TMAJ Software Tools for Tissue MicroArrays Copyright (C) 2007 The Johns Hopkins University All Rights Reserved.

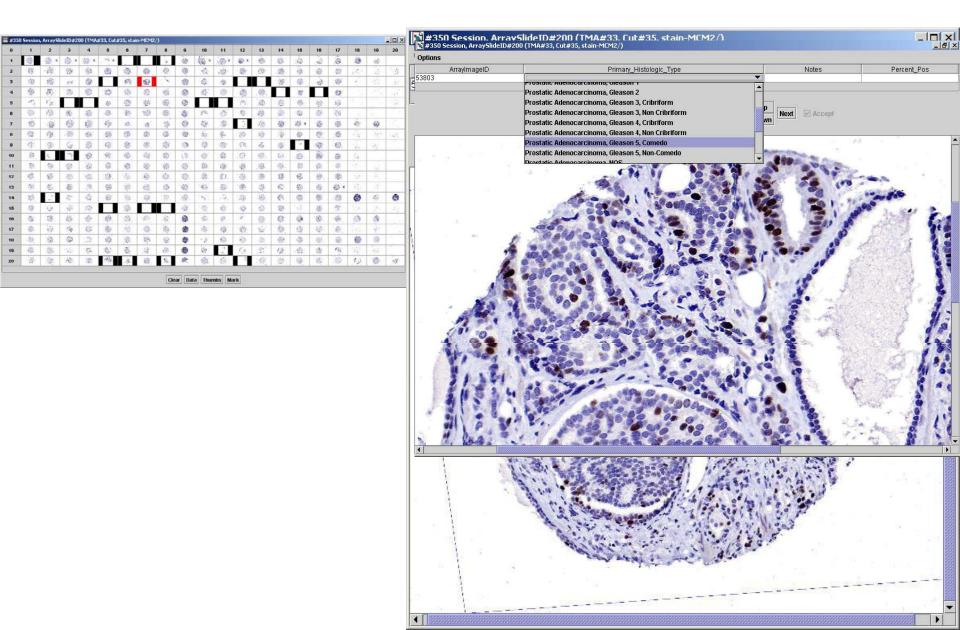
Security Options: Specimens

- Users may only access specimens to which they have permission.
- Admins may assign a user permission to a specimen by using the Users-Specimens tab in the Administrator application.

🕌 A di	min											×
File H	lelp											
Users	Projects Prot	ocols User/Pro	ojects Proje	ct/ArraySlides 🛛 Use	er/ArrayBlocks Gro	up Admins/User	s					
				Search Save	Add Delete Clea	ir) Hide) 🗖 s	ingle More)	Change Password)	Assign Password			
UserID	Username	NameLast	NameFirst	AccessImportApp	AccessImagesApp	SpecimensApp	ArrayBuilderApp	AdminApp	ArrayManagerApp	MetaDataApp	PatientData	
1	ademarz	De Marzo	Angelo	~	~	5-all	3-standard	3-full_admin	~	3-write	3-full_details	^
2	cbenne	Bennett	Christina		V	3-standard	2-read_only	2-group_admin		1-none	2-surg_path_numbers_only	~
<						- 10					>	
195 reco	ords											

Data Input Application

 This application allows for detailed input of data on individual specimens and donor-tissue-blocks.


Specimens	Blocks Tissue Dia	agnosis										
🔄 Data Inp Specimen		Tissue I	Diagnosis							1		
🎂 Data Inpu	t					191	2000	(2)	ion ion			_ 🗆 ×
Specimens	Blocks Tis	sue Diagr	iosis									
	2914,2915,2916	Tissuel	DiagnosisID (DE	A.TissueDiag	jnosis) 🔻	Search	Save A	dd Delete	Hide Clear E	xport 🗆 :	Single <<<	
TissueDiag 2914 2915 2916 4 3 records Primary Histolog Secondary Histolog Secondary Histolog Secondary Histolog	logical Type		E	Microscopi De Marzo De Marzo De Marzo	RegionSize 0.2 0.3 0.2	Christina Christina	otes a PIA Array a PIA Array a PIA Array	0	Prostate_Zone Peripheral Zone Peripheral Zone Peripheral Zone	Primary_H High Grad High Grad	e	
The specimen i lesignated right obulated adipos	PELVIC LYMPH NODE is received fresh label pelvic lymph node. It se tissue measuring 3 iossible node is identi	ed with the consists of r 1.4 x 3.0 x 0.9	multiple pieces of I cm in aggregate.	tan-yellow . Upon	ASSOCIATED F 2. LEFT PELV ASSOCIATED F	IBROADIPC)SE TISSUE, IODE (DISSE)SE TISSUE,	NEGATIVE FOF CTION): ONE (NEGATIVE FOF	(1) LYMPH NODE AND			98

ArrayBuilder Application

 The ArrayBuilder application allows users to design Tissue MicroArrays.

	1	2	3	4	5	6	7	. 8	9	10	
	1108	1108	1108	1108	1076	1076	1076	1076	liver	512	
	554	554	554	554	524	524	524	524	liver	530	
	712	712	712	712	750	750	758	750		773	
	730	730	730	730	686	686	686	686	liver	780	
	549	549	549	549	628	628	628	628	liver	550	
	638	638	638	638	622	622	622	622	brain	650	6
	557	557	557	557	619	619	619	619	brain	551	1
	823	823	823	823	826	826	826	826	brain	801	1
	812	812	812	812	815	815	815	815	brain 🛛	1097	1
	1006	1006	1006	1006	1007	1007	1007	1007	brain	1107	1
	1055	1055	1055	1055	1058	1058	1058	1058	kidney	1005	1
10.	799	799	799	799	855	855	855	855	kidney	1042	1
TissueDiagnosisID: Control Lesion Letter: Tissue Type:				BlockID: 2179 Block: contro Part:	Specin Surg P Hospita	SpecimenID: Surg Path Number: Hospital: Specimen Type:			Fast Entry Entry		

Images Application

Digital Image Acquisition

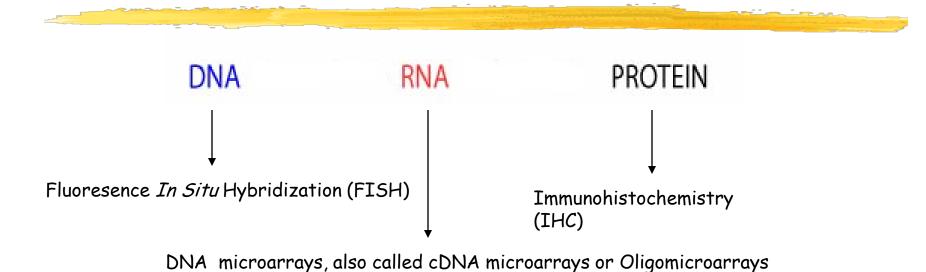
- Can use conventional microscopes
- Record data in spreadsheet: diagnoses and interpretations
- Or the data can be recorded on paper for later entry into a spreadsheet or database
- Major Problem:
 - Easy to loose track of the x and y coordinates of given spots

Institutions Using TMAJ

- Johns Hopkins University
- Harvard Dana Farber Cancer Institute
- Cleveland Clinic
- University of Texas Southwestern
- Vanderbilt University

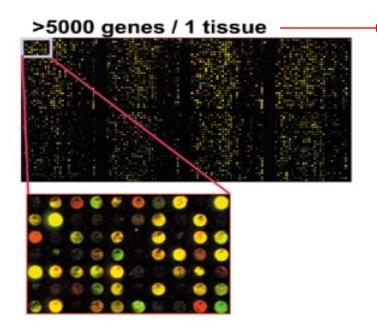
For More Information

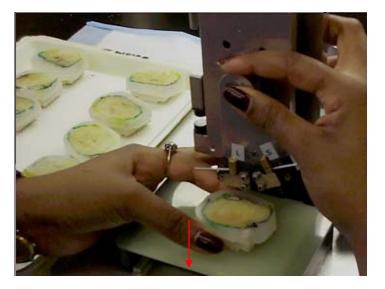
- http://tmaj.pathology.jhmi.edu
- To see published images
 - login to tmaj as a guest and then click the Images button.
 - Username: guest
 - Password: guest

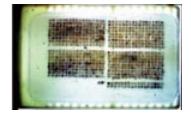

http://users.skynet.be/J.Beever/hosepipe.html

Human Genome Project

Sequencing of the human genome has yielded an estimate of 20,000–25,000 protein-coding genes


http://www.genome.gov/12011238


Detection Techniques



First Gene Discovery, Then Validation

Imaging Tissue Microarray

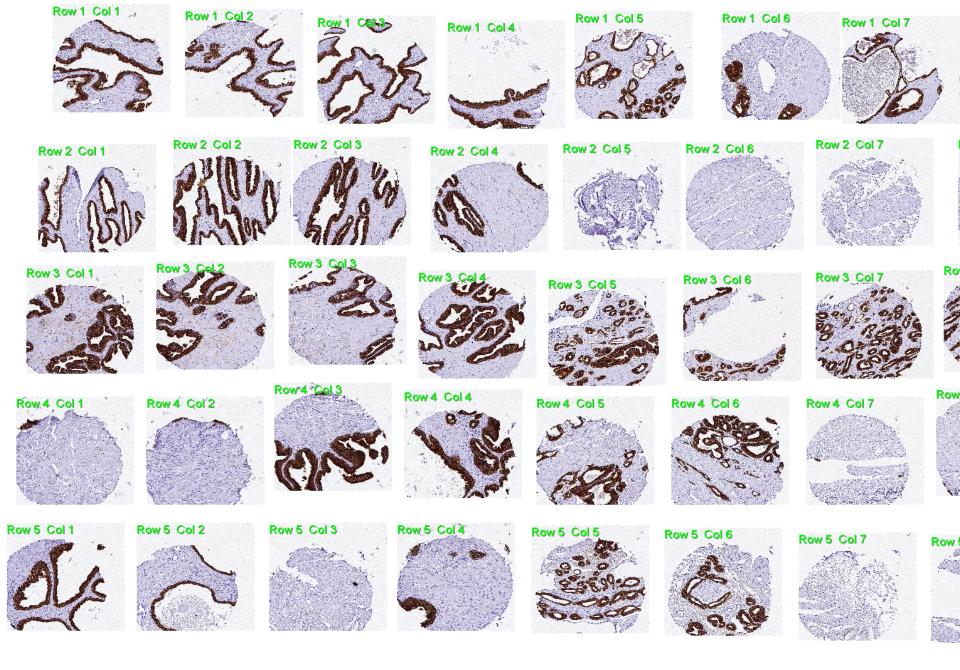
Reason #1

Permanent electronic record which can be stored on a server and accessed from any computer with internet access

Digital Image Acquisition

- Can use conventional microscopes
- Record data in spreadsheet: diagnoses and interpretations
- Or the data can be recorded on paper for later entry into a spreadsheet or database
- Major Problem:
 - Easy to loose track of the x and y coordinates of given spots

U:\TMA_0648_CUT_020_SCAN	_01_HEAPERIO_										l
File Edit View Favorites Tools											
	arch 😥 Folders 🚺	•									
Address 🗀 U:\TMA_0648_CUT_020_SCA	AN_01_HEAPERIO_	100				AT 1893			- Children	14	~
Picture Tasks Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show	0648_A_5_8.jpg	0648_A_5_9.jpg	0648_A_5_10.jpg	0648_A_5_11.jpg	0648_A_5_12.jpg	0648_A_5_13.jpg	0648_A_5_14.jpg	0648_A_5_15.jpg	0648_A_6_1.jpg	0648_A_6_2.jpg	
File and Folder Tasks Image: Constraint of the state Image: Make a new folder Image: Constraint of the state Image: Publish this folder to the Web Image: Constraint of the state	0648_A_6_3.jpg	0648_A_6_4.jpg	0648_A_6_5.jpg	0648_A_6_6.jpg	0648_A_6_7.jpg	0648_A_6_8.jpg	0648_A_6_9.jpg	0648_A_6_10.jpg	0648_A_6_11.jpg	0648_A_6_12.jpg	
Other Places Image: _directory on 'bul2' (Ut)' Imag	0648_A_6_13.jpg	0648_A_6_14.jpg	0648_A_6_15.jpg	0648_A_7_1.jpg	0648_A_7_2.jpg	0648_A_7_3.jpg	0648_A_7_4.jpg	0648_A_7_5.jpg	0648_A_7_6.jpg	0648_A_7_7.jpg	
Details 📚	0648_A_7_8.jpg	0648_A_7_9.jpg	0648_A_7_10.jpg	0648_A_7_11.jpg	0648_A_7_12.jpg	0648_A_7_13.jpg	0648_A_7_14.jpg	0648_A_7_15.jpg	0648_A_8_1.jpg	0648_A_8_2.jpg	
	0648_A_8_3.jpg	0648_A_8_4.jpg	0648_A_8_5.jpg	0648_A_8_6.jpg	0648_A_8_7.jpg	0648_A_8_8.jpg	0648_A_8_9.jpg	0648_A_8_10.jpg	0648_A_8_11.jpg	0648_A_8_12.jpg	
	0648_A_8_13.jpg	0648_A_8_14.jpg	0648_A_8_15.jpg	0648_A_9_1.jpg	0648_A_9_2.jpg	0648_A_9_3.jpg	0648_A_9_4.jpg	0648_A_9_5.jpg	0648_A_9_6.jpg	0648_A_9_7.jpg	
			E.								


Imaging Tissue Microarray

Reason #2

Keeps track of the x, y spot coordinates, making spot review and data entry MUCH easier

3.0 1917 100 200 12 2 6 6 6 5 33 820 Ø 😂 🔬 🐠 123 000 11 5 6 G 🖑 🖉 🦛 🦛 🍏 🕾 5 - C) 🕼 😤 i) 2 18 - PM S 14.00 die. 🚱 🎯 🎯 🖤 🍪 🧐 Car 1 Str. 12 GB S.C

Tissue Microarray – 400 cores, 0.6 mm each – H&E of 4 µm section

Tissue Microarray - 400 cores, 0.6 mm each - CK8 of 4 μ m section

Reason #3

To collaborate efforts between pathologists via telepathology

https://secondslide.com/

Background

Data Sheet

Application Sheet

SecondSlide Webinars

Free Digital Slide Sharing Service for Pathology

SecondSlide makes slide sharing easy:

- Share slides with anyone you choose, regardless of geographical location
- Improve turnaround time
- Eliminate glass slide logistics
- Provide pathology services to remote hospitals
- Gain access to subspecialty expertise

+ View Sample Digital Slide

SecondSlide Applications Clinical Research

Please contact us with questions or

Education

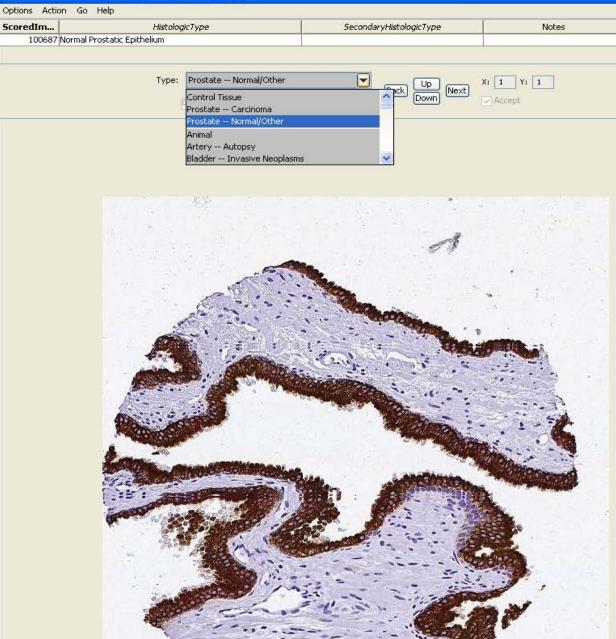
+ Sign Up for A Free Trial

Imaging Tissue Microarray

Reason #4

- Ability to import images into a database, which is linked to image, pathology, and clinical information.
- And then can export data to automate data analysis

TMA Databases


Institution	Name of Database	Webpage
Stanford University, California, USA	TMAD	http://tma.stanford.edu/cgi- bin/home.pl
Johns Hopkins University, Maryland, USA	TMAJ	http://tmaj.pathology.jhmi.e du/
Graz University of Technology, Austria	TAMEE	https://esus.genome.tugraz .at/tma/
MD Anderson Cancer Center, Texas, USA	TAD	http://bioinformatics.mdand erson.org/tad.html

TMAJ The TMAJ Software Project http://tmaj.pathology.jhmi.edu	
Johns Hopkins TMA Lab Version 2.27.0	
Welcome, Kristen ! Login Logout Reset About Exit ArrayBuilderDesign a Tissue MicroArray	James D. Morgan
Array Manager Input Data about ArrayBlocks, ArraySlides, and Scans Images Manager View and Diagnose Images from a Tissue MicroArray slide	Angelo M. De Marzo
Import Import Scanned Images or Specimens Meta Data View and Add Custom Fields to TMAJ	
Specimens Manager Input Data about Specimens, Donor-Blocks, or TissueDiagnoses	
Options Change Password, other miscellaneous tasks Administrator Perform Administrative Tasks for TMAJ	
TMAJ Software Tools for Tissue MicroArrays Copyright (C) 2007 The Johns Hopkins University All Rights Reserved.	

http://tmaj.pathology.jhmi.edu/

		sio	nID	#11	092	2 (1	MA	#1		Cut	#3	1, 1	Stai	in-(:K8	1		-			×	
View	6 1	Fool	s I	Help	es -																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
1	X	1																			~	
2	_					_	_			_										_		
3	-	-		_	-					-	_	-	-	-			-		-	_		
2345		-			-	-		-	-	-	-	-	-		_	-			-			L
6	-																					L
1																						L
8 9																						L
																						L
10		_	_			_	_		_	_		_				_	_			_		
11	-	-		_	-	-		_	-		_	-	-			-	-		-	-		
12	-	-	-			-	-	-		-	_		-		_	-	-	_	-	-		
14	-		_	_				-		-			-	-	_			_				L
15		1			-	1		-	1			-							1			L
16																						L
1/	1	-					-					1							1			
18															_						-	
19	-										_	-				-					×	

SessionID#1092 (TMA#18, Cut#31, Stain-CK8)

http://tmaj.pathology.jhmi.edu/

🔲 Edit Session: Sess	ionID#2161: Kristen Lecksell's scores for (TMA#17, Cu	t#72, St 🗙
SessionID:	# 2161	Options
User:	Lecksell, Kristen	Share
Scan:	ScanID#39 (ScanNumber-1 ArraySlideID#1392)	Delete
Project:	Kristen's Practice Image Analysis project	
Creation Date:	2009-08-26 00:00:00	Finalize
Status:	Incomplete / Not-Shared / Writable	Publish
Description:	#B	
Notes:		
Scoring Strategy:	✓	
Image Analysis Session:		
	Percent Negative/Weak/Mod/Strong	
	Percent Positive	
	Percent Positive/Strong	
	Spectrum	
	Immuno Percent TissueType	
	PTEN Staining	

🗁 ArrayBlockID#18 -- 18 200 Prostate Cases Block 2 (De Marzo)


File View Help

	1	2	3	4	5	6	7	8	9	10
1	210	210	210	210	164	164	164	164	liver	69
2	212	212	212	212	213	213	213	213	liver	35
3	1040	1040	1040	1040	1041	1041	1041	1041	liver	857
4	858	858	858	858	860	860	860	860	liver	48
5	19438	19438	19438	19438	11	11	11	11	liver	1086
6	1013	1013	1013	1013	1010	1010	1010	1010	liver	1091
7	1109	1109	1109	1109	1111	1111	1111	1111	liver	1031
8	900	900	900	900	1022	1022	1022	1022	brain	943
9	934	934	934	934	876	876	876	876	brain	447
10	481	481	481	481	479	479	479	479	brain	465
11	419	419	419	419	420	420	420	420	kid	433
12	85	85	85	85	84	84	84	84	kid	179
13	188	188	188	188	182	182	182	182	kid	194
14	175	175	175	175	176	176	176	176	kid	171
15	131	131	131	131	115	115	115	115	kid	416
16	492	492	492	492	491	491	491	491	tonsil	446
17	533	533	533	533	534	534	534	534	tonsil	516
18	696	696	696	696	698	698	698	698	tonsil	707
19	776	776	776	776	777	777	777	777	tonsil	790
20	756	756	756	756	757	757	757	757	tonsil	440

<)			>
Tissue Diagnosis		Block		Specimen		
TissueDiagnosisID:	210	BlockID:	1343	SpecimenID:	1522	
Lesion Letter:	T_210	Block:	LCP	Surg Path Number:		Details
Outside TD Number:	189	Part:	3	Hospital:	JHH	
Tissue Type:	Prostate Normal/Othe	OutsideBlockNum	:	Specimen Type:	Radical Prostatector	

Data in TMAJ Specimens Table

- Patient Data (Encrypted, not accessable)
 - PatientID
 - Age
 - Race
- Surgical Pathology Data
 - SurgPathNumber
 - DateSpecimenTaken
 - PStage
 - HistologicalType (Gleason for radical prostatectomies)
 - MarginsPositive

Systems for TMA Image Acquisition

Omnyx	In development	http://www.omnyx.com/html
Olympus	Nanozoomer	http://www.olympusamerica.com
Aperio Technologies	ScanScope TM	http://www.aperio.com
Genetix	Ariol	http://www.genetix.com
CompuCyte	Laser Scanning Cytometer	http://www.compucyte.com
HistoRx	Aqua	http://www.historx.com

Olympus/Bacus Scanners

BLISS

Nanozoomer

Tissue Microarray Image Acquisition

Aperio ScanScope

Dako/Zeiss Scanner

ACIS[®] III Automated Cellular Imaging System

HistoRx Scanner

PM-2000™ (fluorescence only) by HistoRx

Hardware of Most Scanning Systems

- Brightfield microscope, objectives (Plan Apochromat: 1.25x, 5x, 10x, 20x, 40x & 60x) and motorized stage
- Color video camera such as a 3 CCD (charge-coupled device)
- High resolution monitor
- Slide loader
- CPU

Software of Most Scanning Systems

- Proprietary
- Composite
- Controls the hardware
 - Stage
 - Objectives
 - Video camera
- TMA analysis
 - Morphometric measurements
 - IHC quantification
 - Histology pattern recognition

Image Capture

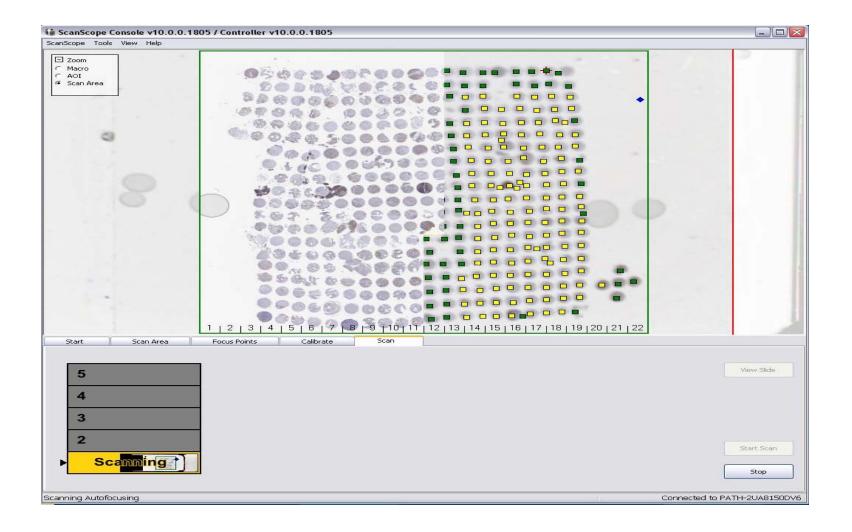
- Digitizing the tissue or cells on a glass microscope slide, so that the personal computer becomes the microscope
- Can view under different magnifications
- Can represent whole tissues or TMAs
- Working with pixels instead of a real image

20x Camera Capture

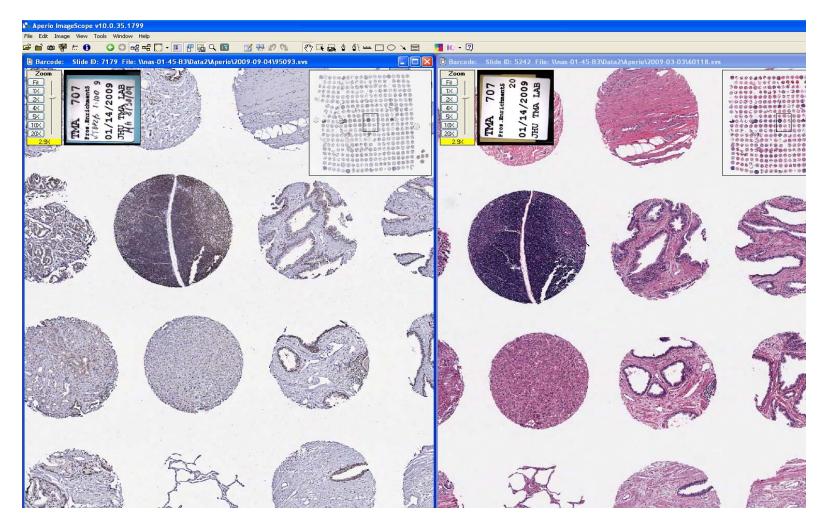
	Pixel # / Micron
Aperio: ScanScope CS	2
Olympus/Bacus Labs: BLISS	2.37

Megabytes & Gigabytes


- Digitized TMA: 100 MB to 3 GB
- Storage is an issue
- BUT storage is getting cheaper
- The higher the magnification the greater the storage space needed


- Opening, Moving, Storing of files is a real issue.
- Costs time and money
- Backing up

Getting better


nage Properties	Motion Properties	ScanScope Properties	Area Of Interest	
Properties				
Velocity		Get		
Value:			-	
value,				
4.572156		Update		
Contraction Contraction	Parmset	Update		
4.572156		Update		
4.572156		Update		
4.572156	t: pints low pints			

Viewing an Image: Aperio

Tissue Microarray - 400 cores, 1.5 mm each - stained with TOP2B on the left and H&E on the right - 4 μm section each

Spectrum[™]

User: Lecksell, Kristen, Role: _SysAdmin

Edit TMA Map

TMA Composites

- Made by software that combines or stitches together the original multiple images for each spot to form one image/spot
- Contains some naming convention that identifies the X & Y coordinates of each spot

Pathologist-based Analysis

- Standard on IHC studies
- Semi-quantitative
- Qualitative
- Inter-observer variation
- Intra-observer variation
- Difficult to reproduce

Pathologist-based analysis of HER2 on HerceptTest

Score	Criteria
Weakly Positive: 2+	Weak to moderate complete membrane staining in >10% of tumor cells
Strongly Positive: 3+	Strong complete membrane staining in >10% of tumor cells

Image Analysis

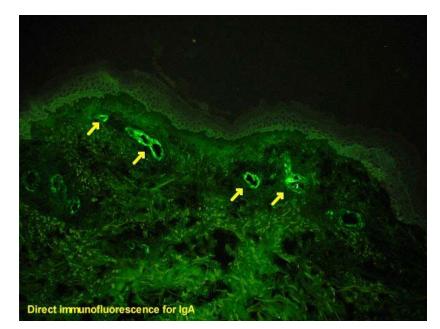
"It is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face."

Typical Image Analysis

- Includes determining where the edges of an object are, counting similar objects, calculating the area, perimeter length and other useful measurements of each object.
 - Counting and measuring anatomic structures
 - Nuclei
 - Microvessels
 - Lymphoid cells
 - Counting and measuring pixel color intensities


ImmunoHistoChemistry

- Chromagenic Dyes
 - Brown
 - Blue
 - Red
- Fluorescent Dyes
 - Red
 - Blue
 - Green


Fluorescence In Situ Hybridization

- Cytogenetic technique
- Detects and localizes the presence or absence of specific
 DNA sequences on chromosomes

Immunofluorescence

- The labeling of antibodies or antigens with fluorescent dyes
- Used to visualize subcellular distribution of biomolecules

Users of Image Analysis

- Oncology
- Pathology
- Toxicology within the pharmaceutical industry

Quantitative Image Analysis

- Image information on the pixels is quantified
 - Hue (Color) stain color Saturation (Color Purity) – amount of stain Luminosity (Intensity) – specimen density

Why Use It

"The continuous staining intensity values provided by the quantitative image analysis allows for better discrimination of subtle protein expression differences, which may not be apparent in the pathologist categorical evaluation."

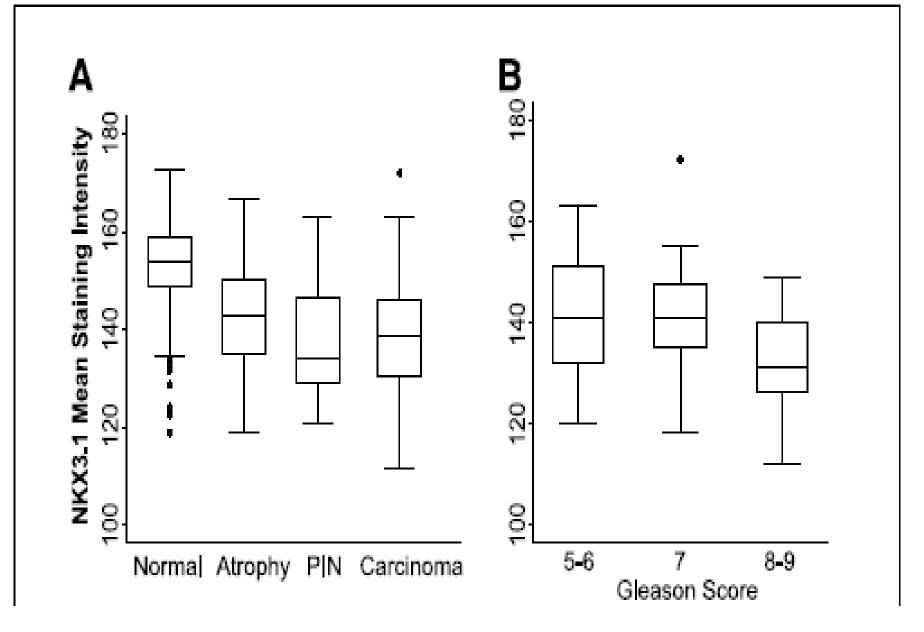
Alpha-Methylacyl-CoA Racemase Protein Expression Is Associated with the Degree of Differentiation In Breast Cancer Using Quantitative Image Analysis Witkiewics AK et. al. Caner Epi Biomarkers Prev, 2005, vol. 14, no.6

Publications

Research Article

Decreased NKX3.1 Protein Expression in Focal Prostatic Atrophy, Prostatic Intraepithelial Neoplasia, and Adenocarcinoma: Association with Gleason Score and Chromosome 8p Deletion

Carlise R. Bethel,¹ Dennis Faith,⁴ Xiang Li,² Bin Guan,² Jessica L. Hicks,³ Fusheng Lan,⁵ Robert B. Jenkins,⁵ Charles J. Bieberich,² and Angelo M. De Marzo³


¹Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health; ³Department of Biological Sciences, University of Maryland Baltimore County; ¹Departments of Pathology and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland; ¹The University of Minnesota School of Medicine, Minneapolis, Minnesota; and ³The Mavo Clinic, Rochester, Minnesota

Abstract

NKX3.1 is a homeobox gene located at chromosome 8p21.2, and one copy is frequently deleted in prostate carcinoma. Prior studies of NKX3.1 mRNA and protein in human prostate cancer and prostatic intraepithelial neoplasia (PIN) have been conflicting, and expression in focal prostate atrophy lesions has not been investigated. Immunohistochemical staining for NKX3.1 on human tissue microarrays was decreased in most focal atrophy and PIN lesions. In carcinoma, staining was inversely correlated with Gleason grade. Fluorescence in situ hybridization showed that no cases of atrophy had loss or gain of 8p, 8 centromere, or 8q24 (C-MYC) and only 12% of highgrade PIN lesions harbored loss of 8p. By contrast, NKX3.1 staining in carcinoma was correlated with 8p loss and allelic loss was inversely related to Gleason pattern. Quantitative reverse transcription-PCR for NKX3.1 mRNA using microdissected atrophy revealed a concordance with protein in five

in approximately 50% to 85% of cases (2, 3). Given that mutations in the remaining allele of *NKX3.1* have not been detected (4, 5), *NKX3.1* may function as a haploinsufficient tumor suppressor gene. That loss of one allele of *NKX3.1* occurs early in prostate carcinogenesis is evidenced by the finding that LOH on chromosome 8p has been reported to occur in high-grade prostatic intraepithelial neoplasia (PIN), a lesion that is a putative precursor to many invasive prostatic carcinomas (6), at a frequency between 20% and 80% (7–9).

Targeted disruption of Nkx3.1 in mice results in abnormal prostate ductal morphogenesis and protein secretion (10–12). Although Nkx3.1 homozygous mutant mice do not develop invasive carcinoma, epithelial hyperplasia and PIN lesions arise with age. Compound mutant mouse studies indicate that cooperativity exists between Nkx3.1 and the tumor suppressors *Pten* and *Cdkn1b* (encoding p27; refs. 13–17). These compound mutants develop PIN lesions that progress to invasive carcinomas and at times to metastatic disease. Because the effects are seen in NKX3.1

Decreased NKX3.1 Protein Expression in Focal Prostatic Atrophy, Prostatice Intraepithelial Neoplasia, and Adenocarcinoma: Association with Gleason Score and Chromosome 8p Deletion: Cancer Res 2006, vol. 66, no. 22

Trefoil Factor 3 Overexpression in Prostatic Carcinoma: Prognostic Importance UsingTissue Microarrays

Dennis A. Faith,¹ William B. Isaacs,^{1,3} James D. Morgan,² Helen L. Fedor,² Jessica L. Hicks,² Leslie A. Mangold,¹ Patrick C. Walsh,¹ Alan W. Partin,¹ Elizabeth A. Platz,⁴ Jun Luo,^{1**} and Angelo M. De Marzo^{1,2,3*}

¹Brady Urological Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland ²Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland ³The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, Maryland

⁴Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland

BACKGROUND. Human intestinal trefoil factor 3 (TFF3) is a member of a family of polypeptides encoded by a cluster of genes on chromosome 21. Through gene expression profiling studies TFF3 mRNA has been found to be overexpressed in prostate cancer. **METHODS.** We used immunochemistry on tissue microarrays and software tools, collectively

Use of Human Vascular Tissue Microarrays for Measurement of Advanced Glycation Endproducts

Marc K. Halushka, Elizabeth Selvin, Jie Lu, Anne M. Macgregor and Toby C. Cornish

Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland (MKH,JL,AMM,TCC), and Departments of Epidemiology and Medicine, Johns Hopkins Bloomberg School of Public Health and the Johns Hopkins University School of Medicine, Baltimore, Maryland (ES)

Correspondence to: Marc K. Halushka, MD, PhD, Ross Building, RM 632L, 720 Rutland Avenue, Baltimore, MD 21205. E-mail: <u>mhalush1@jhmi.edu</u>

Advanced glycation endproducts (AGEs) are present in the vasculature and are associated with vascular disease. We determined levels of AGEs in eight distinct adult vascular tissues using tissue microarray (TMA) technology and associated these levels with clinical characteristics. Medium-to-large caliber blood vessels were harvested from 100 adult autopsies to create 17 TMAs. AGE levels were evaluated by IHC using a polyclonal anti-AGE antibody on over 700 unique blood vessels. Slides were digitally scanned, and quantitative analysis was performed using a color deconvolution image analysis technique. Medial AGE staining was strongly correlated between all eight blood vessels. In the media, AGE staining levels were significantly higher at older ages (p=0.009), in white subjects (p<0.001) and with longer postmortem interval (PMI; p < 0.0001). These associations remained significant after simultaneous adjustment for age, race/ethnicity, PMI, and diabetes status. Diabetes was associated with elevated AGE levels but only after adjustment for confounding by clinical variables including race/ethnicity, hypertension, and kidney function. This extensive vascular study shows that AGE accumulation in the macrovasculature is a global process affecting atherosclerosis-prone and -resistant vessels. It also suggests ethnicity has a previously undescribed role in vascular tissue AGE levels. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 57:559-566,2009)

α-Methylacyl-CoA Racemase Protein Expression Is Associated with the Degree of Differentiation in Breast Cancer Using Quantitative Image Analysis

Agnieszka K. Witkiewicz,¹ Sooryanarayana Varambally,² Ronglai Shen,⁴ Rohit Mehra,² Michael S. Sabel,^{3,5} Debashis Ghosh,⁴ Arul M. Chinnaiyan,^{2,5} Mark A. Rubin,¹ and Celina G. Kleer^{2,5}

¹Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Departments of ²Pathology, 'Surgery, and 'Biostatistics; and 'Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan

Abstract

 α -Methylacyl-CoA racemase (AMACR) is an enzyme involved in the metabolism of fatty acids and is an important tissue biomarker in the prostate to distinguish normal glands from prostate cancer. Here, for the first time, we evaluated the expression of AMACR protein in normal breast, ductal carcinoma *in situ*, and invasive carcinomas. By immunofluorescence and immunohistochemistry, AMACR was seen in cytoplasmic granules consistent with a mitochondrial and peroxisomal localization. AMACR expression was determined by immunohistochemistry on 160 invasive carcinomas with long follow-up, using a high-density tissue microarray, and evaluated by two methods: standard pathology review and quantitative image analysis. AMACR was overexpressed in 42 of 160 (26%) invasive carcinomas, and it was associated with a decrease in tumor differentiation, a feature of aggressive breast cancer. Quantitative analysis allowed for better discrimination and more accurate evaluation of lowintensity staining. In conclusion, AMACR protein is expressed in normal breast and its expression seems to increase in invasive carcinomas. We observed stronger AMACR protein expression in high-grade carcinomas when compared with low-grade ones. Quantitative image analysis is a novel way to accurately and reproducibly evaluate immunohistochemistry in breast tissue samples using highdensity tissue microarrays. (Cancer Epidemiol Biomarkers Prev 2005;14(6):1418–23)

Introduction

Epidemiologic studies show that red meat and diary products, which are both sources of branched chain fatty acids, are associated with breast cancer risk. Case control studies from geographically disparate areas have found a significant positive association between the intake of meat, red meat, and high-fat meat and the risk of developing breast cancer (1-3). Breast cancer incidence is associated with per cancer, very little is known about AMACR expression in normal breast and in breast cancer.

At this time, pathologist-based analysis is the current standard for the evaluation of immunohistochemistry; however, because of its semiquantitative nature, it is at times difficult to reproduce by different observers. For example, the interpretation of HER-2/neu by immunohistochemistry using

----- NEW TECHNOLOGY

Automated subcellular localization and quantification of protein expression in tissue microarrays

ROBERT L. CAMP, GINA G. CHUNG & DAVID L. RIMM

Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA Correspondence should be addressed to D.L.R.; email: david.rimm@yale.edu

Published online 21 October 2002; doi:10.1038/nm791

The recent development of tissue microarrays-composed of hundreds of tissue sections from different tumors arrayed on a single glass slide—facilitates rapid evaluation of large-scale outcome studies. Realization of this potential depends on the ability to rapidly and precisely quantify the protein expression within each tissue spot. We have developed a set of algorithms that allow the rapid, automated, continuous and quantitative analysis of tissue microarrays, including the separation of tumor from stromal elements and the sub-cellular localization of signals. Validation studies using estrogen receptor in breast carcinoma show that automated analysis matches or exceeds the results of conventional pathologist-based scoring. Automated analysis and sub-cellular localization of betacatenin in colon cancer identifies two novel, prognostically significant tumor subsets, not detected by traditional pathologist-based scoring. Development of automated analysis technology empowers tissue microarrays for use in discovery-type experiments (more typical of cDNA microarment for compartmentalization of expression) utilizes fluorescent tags to separate tumors from stroma and to define subcellular compartments. The distribution of a target antigen is then quantitatively assessed according to its co-localization with these tags. As subcellular compartments (for example, membrane, cytoplasm, nuclei and so forth) of different tissues and tumors vary widely in size and shape, traditional methods of defining compartments based on morphometric criteria (that is, feature extraction) perform poorly on a large-scale basis. Rather than counting target-containing features, PLACE delineates target expression as the sum of its intensity divided by the total size of the assayed compartment.

As the thickness of tissue sections makes it difficult to discriminate between overlapping subcellular compartments, we have also developed a novel, rapid exponential subtraction algorithm (RESA), which subtracts an out-of-focus image, collected slightly below the bottom of the tissue, from an in-focus image, based on pixel intensity, signal-to-noise ratio, and the

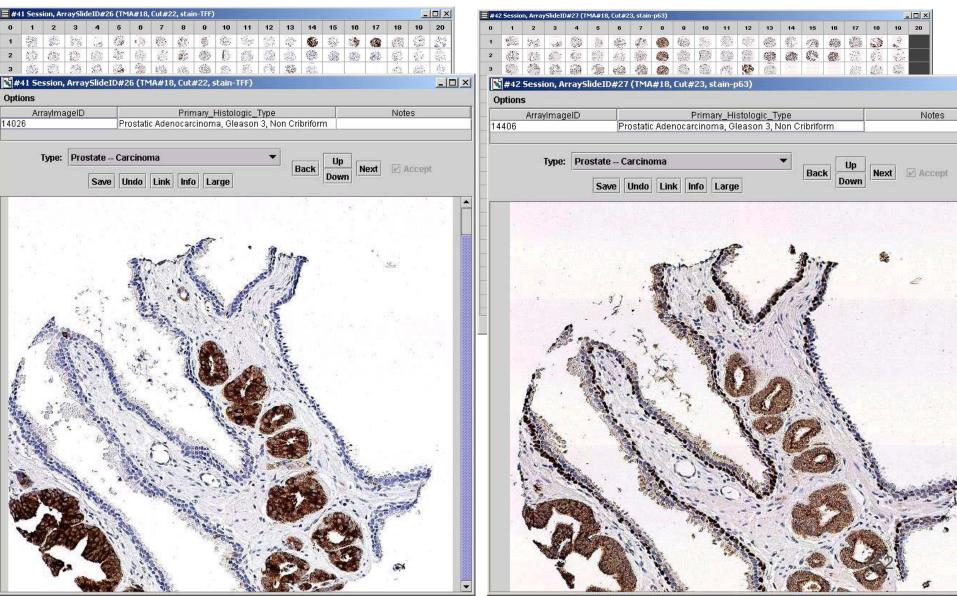
Quantitative Image Analysis Data

Region	Label 🛆	Brown Area	Intensity	Blue Area	Percentage	Region Score	Range	Region Area	Average Brown Intensity	Row	Col	
73>	Ay_1x_1	13,887	131.00	679,681	2.00	2.59	0	3,360,516.00	131	0	8	
64>	Ay_1x_2	2,340	127.00	508,384	0.46	2.49	0	4,091,863.00	127	0	7	
55>	Ay_1x_3	4,630	137.00	636,202	0.72	2.73	0	4,443,115.00	137	0	6	
46>	Ay_1x_4	2,248	128.00	372,074	0.60	2.52	0	4,680,475.00	128	0	5	
37>	Ay_1x_5	1,455	131.00	561,304	0.26	2.59	0	4,222,184.00	131	0	4	
28>	Ay_1x_6	5,080	136.00	243,279	2.05	2.71	0	3,732,823.00	136	0	3	
19>	Ay_1x_7	2,183	129.00	136,396	1.58	2.54	0	3,617,851.00	129	0	2	
10>	Ay_1x_8	3,115	124.00	456,341	0.68	2.42	0	3,839,037.00	124	0	1	
1>	Ay_1x_9	14,488	141.00	307,735	4.50	2.83	0	3,512,177.00	141	0	0	
	Ay_2x_1	21,641	142.00	78,344	21.64	2.85	0	3,226,102.00	142	1	8	
65>	Ay_2x_2	5,624	133.00	691,468	0.81	2.64	0	3,990,782.00	133	1	7	
56>	Ay_2x_3	1,952	134.00	788,298	0.25	2.66	0	3,816,783.00	134	1	6	
	Ay_2x_4	1,762	130.00	397,287	0.44	2.56	0	3,416,594.00	130	1	5	
38>	Ay_2x_5	3,089	132.00	526,069	0.58	2.61	0	3,685,898.00	132	1	4	
	Ay_2x_6	2,843	129.00	741,022	0.38	2.54	0	4,264,986.00	129	1	3	
20>	Ay_2x_7	3,512	126.00	413,834	0.84	2.47	0	3,850,962.00	126	1	2	
11>	Ay_2x_8	2,227	131.00	382,420	0.58	2.59	0	3,714,733.00	131	1	1	
	Ay_2x_9	2,982	130.00	438,740	0.68	2.56	0	3,557,805.00	130	1	0	
75>	Ay_3x_1	26,783	145.00	378,032	6.62	2.92	0	3,743,370.00	145	2	8	
66>	Ay_3x_2	13,145	130.00	350,378	3.62	2.56	0	4,004,523.00	130	2	7	
57>	Ay_3x_3	4,469	128.00	235,968	1.86	2.52	0	3,332,755.00	128	2	6	
48>	Ay_3x_4	6,607	131.00	246,994	2.61	2.59	0	3,879,280.00	131	2	5	
39>	Ay_3x_5	9,497	134.00	395,068	2.35	2.66	0	3,814,716.00	134	2	4	
30>	Ay_3x_6	2,518	126.00	334,253	0.75	2.47	0	4,141,314.00	126	2	3	
21>	Ay_3x_7	537	132.00	66,964	0.80	2.61	0	4,295,700.00	132	2	2	
12>	Ay_3x_8	5,265	122.00	634,025	0.82	2.37	0	4,222,104.00	122	2	1	

Other Uses of Scanning:

- Telepathology
 - Diagnosis
 - Consultation

Education


Publishing TMA Images and Scoring Data Over the Internet

- Roughly modeled after Stanford Microarray Database
- Concept:
 - Once a study is published by a journal, all TMA diagnoses, image, scoring and non-protected clinical data can be "published" as supplemental data to the Internet for public online viewing or down loading
 - In addition, some TMAJ Images now linked to "Proteinpedia" database

(<u>http://humanproteinpedia.org</u>) by Akhilesh Pandy, MD PhD.

	🛐 #599 Session, ArraySlidelD#4	77 (TMA#358, Cut#2, Stain-PTEN)	
	Options		
	ScoredImageID Primary_ Normal Pro:	Histologic_Type Secondary_Histologic_Type Percent_Positive Percent_Strong static Epithelium 100 80	Nc
·			•
Projects	Туре		
Open Sessia		Draw Save Link Info Large Back Down Next	
	*		
Recent Sess			
		A NE	
#5 Session,			
#7 Session,			
#46 Session			
		and the second se	
All Sessions		AND THE REAL AND	
🗖 My Projet			
Shared S			
Publishe		The Company of the second se	
	Ω.		61

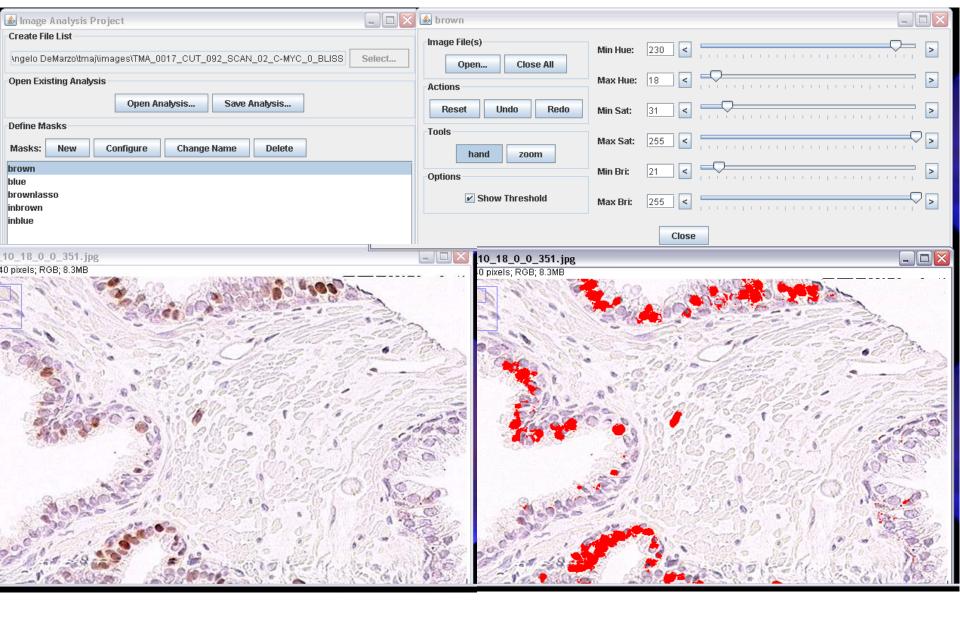

Images Application: Viewing 2 Stains

Image Application: Filtering

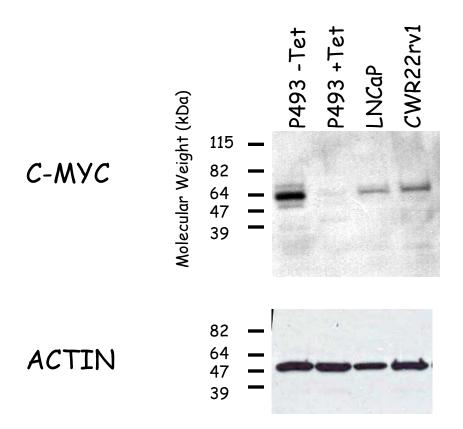
• The table shows information about every image (identified by x and y)

-			in an Arrav	#3	50 Ses	sion, A	rraySli	deID#2	200 (TN	1A#33	, Cut#3	35, stai	n-MCM	2/)									1	. 🗆 🗙
#	3 Ses	sion, Arrays	5lideID#3 (TMA#18, Cut#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Remove			1	×	-	() ()	(x	28 X			2	•	200 ×	X		6	٢	. Q			69	40	
		Control	Drimon, Llistolag	2	- 63	· 🖗	1	- 63	@}		働	Ø.	۲	1	1330	-	0	.23	1	-			10	1.2
ΨX	1.1	Control	Primary_Histolog	3	1	1 Sin	2%			1	1	1.00		3	1	1.		35		184	1	-	42	13.5
9	17	tonsil	Not Specified	4	-	a.	- Ma	1	1	535	0	- 60	@ .	10	۲		. 63.		额		1	÷.,	111	
10	17		Normal Prostatic Epitheli	5	or.	19			60		100	69				(P)		10	de.	· 805	1	100	12.0	1
11	17		Normal Prostatic Epitheli	1.55	1	13	-		B		-0	-69		610	3	-	1	<u></u>		6	0			
12	17		Normal Prostatic Epitheli	6	1.1	-	40	- 12/32 TIM					1			-						14. 1.72	14 1842	
13	17		Normal Prostatic Epitheli	7	彀	1		S	610	13	谱		0	23		174	- Elitera de la compacta de la compa		🧼 >	. @		430	64	15 and
14	17		Prostatic Adenocarcinom	8		1		1	働	-	鬱	0	- 699-	100	the second	69		123	9	1997.		11.4	25	1.465
15	17		Normal Prostatic Epitheli	9	13	ap.	63	-		68	瘛.		3	1	:12	1. A.	1	1	14	1	٢		127	0.000
16	17		Normal Prostatic Epitheli	10	100		-	-		@.	-	(B)	(3)	@)'		5	- Ø.	Enit.		1				
17	17	120000	Normal Prostatic Epitheli	11	動		- (t)		0	3	1	1		ġ,	()¢`				(9409) (89)	- QQ	- Ser - Ser	1.00	- 101	
18	17	vas	Not Specified					-		100	-	439		1. 22.200				-				1.1	355	
19	17	vas	Normal Prostatic Stroma	12	Ø			(總)	:::D)	19	189	.83	@.		().	· @).		靈	6	· @?;	戀	124		-
20	17	brain	Not Specified	13	66	¢.	1990 - E	198		1		8.20	1	"你这		٠	13	E.	影		@ >	e anges		
1	18		Normal Prostatic Epitheli	14	53	1	1940	200	-	198	8	1	100.	· Wa	. 52	124	- 89	S.		1	1	0	- 200	
2	18		Normal Prostatic Epitheli	15	19	4. g	620	69	1	10			÷.	1		- 63	٢	۲	62	. 御.	S.		310	3.2
3	18		Normal Prostatic Epitheli	16	3	. 200	8		: (\$).		1.000	182		C.		9	0	0	()	- (Q)-	-69-	1	2	
4	18		Normal Prostatic Epitheli			100	20.00		-	1.007	atte.	. State	1000	1000		1.20		-				1000		10.00
399 r	есог	ds		17	<i>a</i>	12518-11				. D.	1000	455	*	-			No.		4	68	1	1.50	Y.	22
				18	- 53	-	1	1	Ø	E.	69	\$	-	· Å	13	٢	- <u>M</u>	(B)	1	.@):	-		-	
				19	500		* 98. A Se	S.		-		@ .	-	637	199	1.2	S.	12		1	12	182	4.4	
				20	1	-	٢	÷.	1996	4		×.	Ø.	-		11		1		e.	Ø	2	0	S.
												Clear	Data	a Thu	umbs	Mark								163

T. Cornish, MD PhD, J. Morgan - Frida

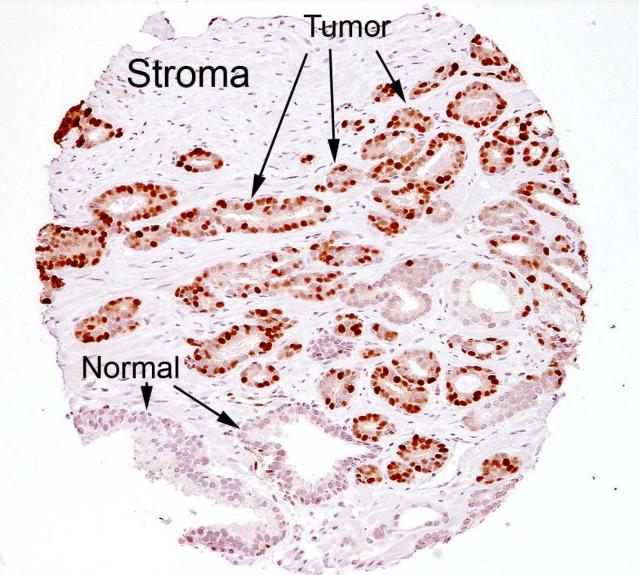
Viewing Image Analysis Results

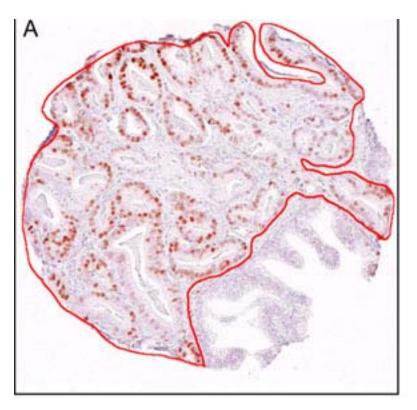
		Refresh		II In Filter	(port Excel	Show Line Up Images		
х	Y	TissueTypeID_Final	HistologicType_Final	brown_IntensityMaximum	brown_IntensityMean	lasso1_IntensityMaximum	lasso1_IntensityMean	
	1	Prostate Carcinoma	Prostatic Adenocarcinoma, Gleason 3, Cribriform	253.746	191.508	0.0	0.0	
	1	Prostate Normal/Other	Normal Prostatic Epithelium	253.746	189.118	48.912	13.09	
	1	Prostate Carcinoma	Prostatic Adenocarcinoma, Gleason 5, Comedo	253.746	189.408	33.124	19.256	
_	1			253.746	190.703	29.847	18.496	
_	1			253.746	190.28	0.0	0.0	


 Image Analysis Results may be viewed sideby-side with a regular scoring session

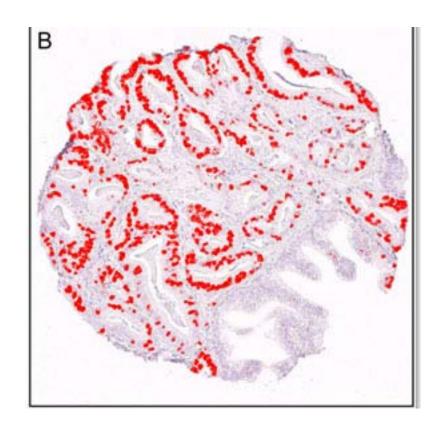
TMAJ & Frida Integration

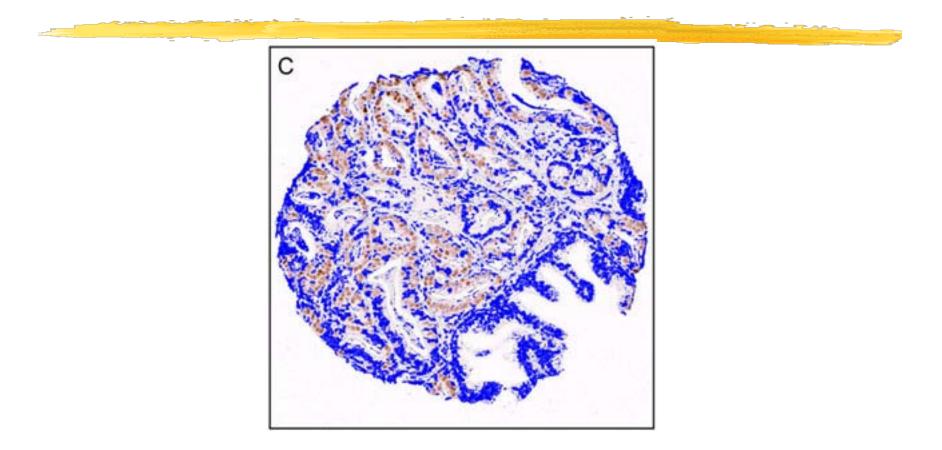
 The image analysis software package
 Frida has been
 integrated with TMAJ


🏄 Image/	Analysis#22: (scanID#25,userID#1,proje 🔳 🗖 🔀									
Help										
ID:	ImageAnalysis#22: (scanID#25,userID#1,projectID#6) Image A									
Project:	oject: 903 project									
User:	De Marzo, Angelo									
ArraySlide:	ArraySlideID#1359 (TMA#17, Cut#39, Stain-903DIG)									
Scan: ScanID#25 (ScanNumber-1 ArraySlideID#1359)										
Define Masks Masks: New Open Edit Delete										
								brown		
lasso1										
Write Anal										
Save Ma	asks Run Analysis									
Masks Saved	0%									

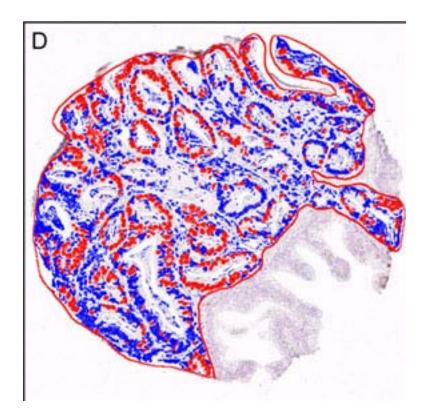

C. Koh, Unpublished

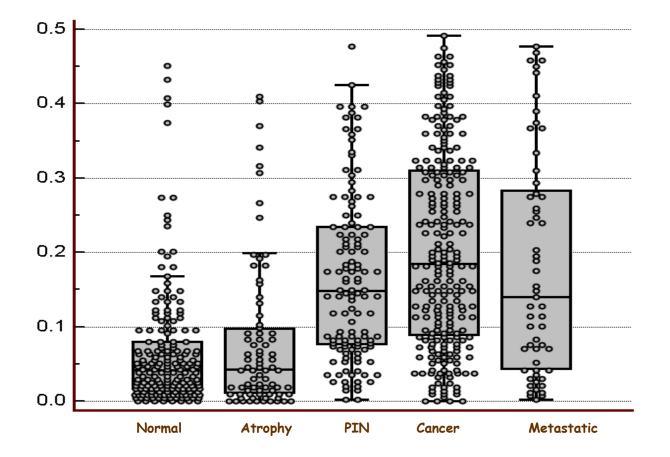
C-MYC Staining in Human Prostate Tissues




B. Gurel, T. Iwata, C. Koh, et al, AM De Marzo, Modern Path, 2008 In Press

A. Creation of the "Lasso" mask, enabling the user to disregard the benign prostatic epithelium in the TMA spot.


B."Brown" and "Blue" color masks, differentiating the brown DAB stain and the blue hematoxylin stain, respectively.



D. The "Meta-Mask" created by combining the lasso and color masks using Boolean logic.

"and", "or", "not"

C-MYC Staining

B. Gurel, T. Iwata, C. Koh, et al, AM De Marzo, Modern Path, 2008 In Press

Infrared spectroscopic imaging for histopathologic biotechnology recognition

Daniel C Fernandez^{1,3,4}, Rohit Bhargava^{1,4}, Stephen M Hewitt² & Ira W Levin¹

LETTERS

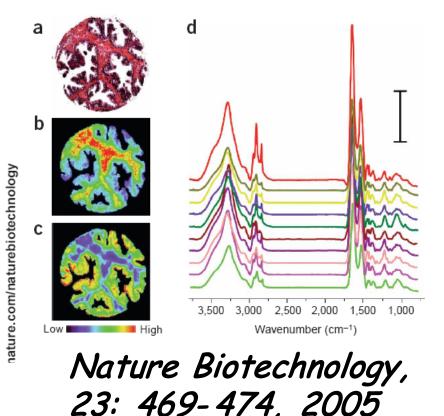


Figure 1 Chemical staining and infrared spectroscopic characterization of prostate tissue. (a) H&E-stained biopsy section of human prostate tissue showing epithelial cells defining the lumen (top). (b,c) The relative protein (middle, b) and phosphodiester (bottom, c) concentrations were determined, without the use of external reagents, from infrared spectral absorbance at 1,545 cm⁻¹ and 1,080 cm⁻¹, respectively, from a corresponding, unstained section, demonstrating noninvasive, nondestructive tissue segmentation similar to that achieved by stains. Absorbance intensities are indicated by the color bar at the bottom. (d) Characteristic infrared absorbance spectra of ten histologic classes comprising prostate tissue are (from bottom to top) from normal epithelium, fibrous stroma, mixed stroma, muscle, nerve, lymphocytes, stone, ganglion, endothelium and blood. The bar indicates an absorbance of 0.2 absorbance units.

characteristic spectral pattern descriptors that establish differences between specific cell types, and term these spectral features 'metrics' (Supplementary Table 1 online). For example, the ratio of absorbance of the phosphodiester-specific spectral peak at 1,080 cm⁻¹ to the amide II vibration-specific absorbance at 1,545 cm⁻¹ provides a definitive metric for discriminating epithelial cells from stromal cells. In contrast to the morphologic identification of specific cell

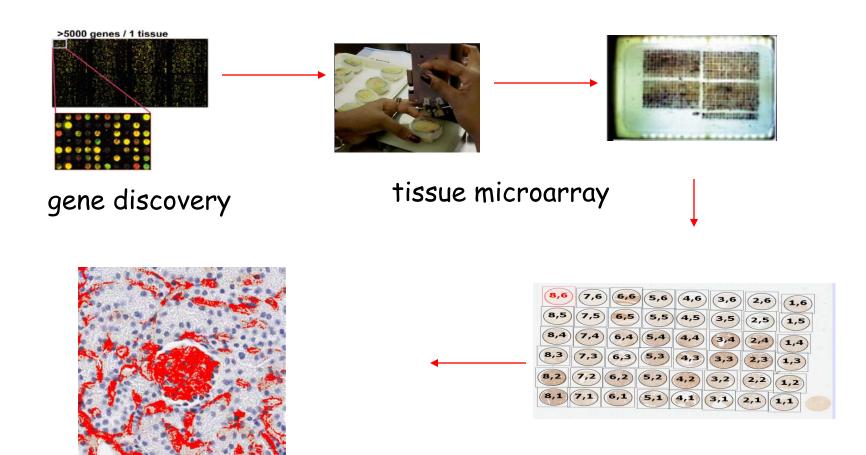


image acquisition

Image analysis

For More Information...

- Visit <u>http://tmalab.jhmi.edu</u> (about our TMA lab, with links to software)
- View the Images Application
 - Log on to <u>http://www.tmaj.com</u>
 - Install Java Web Start
 - Click on the "Images" link
 - Log in as Username: guest Password: guest
 - Click on "Published Sessions" (session data can be viewed but not modified)
 - Click on "Angelo De Marzo"
 - Click on any of the available sessions

Tissue Microarray Lab Roster

Kristen Lecksell Imaging Specialist

Angelo Demarzo Director

James Morgan Software Engineer

Marcella Southerland TMA Specialist

Marc Halushka Co-Director

Helen Fedor Manager